×

Hall effects on MHD flow in a rotating system with heat transfer characteristics. (English) Zbl 1258.76197

Summary: Closed-form solutions are derived for the steady magnetohydrodynamic (MHD) viscous flow in a parallel plate channel system with perfectly conducting walls in a rotating frame of reference, in the presence of Hall currents, heat transfer and a transverse uniform magnetic field. A mathematical analysis is described to evaluate the velocity, induced magnetic field and mass flow rate distributions, for a wide range of the governing parameters. Asymptotic behavior of the solution is analyzed for large \( M^2\) (Hartmann number squared) and \( K^2\) (rotation parameter). The heat transfer aspect is considered also with Joule and viscous heating effects present. Boundary layers arise close to the channel walls for large \( K^2\), i.e. strong rotation of the channel. For slowly rotating systems (small \( K^2\)), Hall current parameter (\( m \)) reduces primary mass flow rate (\( Q_x/ R \rho v \)). Heat transfer rate at the upper plate \((d\theta/ d \eta)_{\eta=1}\) decreases, while at the lower plate \((d\theta/ d \eta)_{\eta=-1}\) increases, with increase in either \( K^2\) or \( m \). For constant values of the rotation parameter, \( K^2\), heat transfer rate at both plates exhibits an oscillatory pattern with an increase in Hall current parameter, \( m \). The response of the primary and secondary velocity components and also the primary and secondary induced magnetic field components to the control parameters is also studied graphically. Applications of the study arise in rotating MHD induction machine energy generators, planetary and solar plasma fluid dynamics systems, magnetic field control of materials processing systems, hybrid magnetic propulsion systems for space travel etc.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76U05 General theory of rotating fluids
80A20 Heat and mass transfer, heat flow (MSC2010)
Full Text: DOI

References:

[1] Vogin C, Alemany A (2007) Analysis of the flow in a thermo-acoustic MHD generator with conducting walls. Eur J Mech B 26(4):479–493 · Zbl 1112.76088 · doi:10.1016/j.euromechflu.2006.10.006
[2] Thakur C, Mishra RB (1988) On steady plane rotating hydromagnetic flows. Astrophys Space Sci 146(1):89–97 · Zbl 0663.76132 · doi:10.1007/BF00656985
[3] Friedrich J, Kupfer C, Fischer B, Muller G (1997) Influence of rotating magnetic fields on heat and species transport in crystal growth by the vertical gradient freeze method. In: 3rd Int. Conf. Transport Phenomena in Magnetohydrodynamic and Electroconducting Flows, Aussios, France, 22–26 September, pp 439–444
[4] Yasuda H (2007) Applications of high magnetic fields in materials processing. In: Molokov, S., Moreau, R., Moffatt, K. (eds), Magnetohydrodynamics: historical evolution and trends, Fluid mechanics and its applications, vol 80, Part IV, pp 329–344
[5] Zueco J, Anwar Bég O (2009, submitted) Network numerical simulation of hydromagnetic squeeze film flow between rotating disks with magnetic Reynolds number effects. Eur J Mech B
[6] Han SM, Wu ST, Dryer M (1988) A three-dimensional, time-dependent numerical modeling of super-sonic, super-alfvénic MHD flow. Comput Fluids 16(1):81–103 · Zbl 0638.76127 · doi:10.1016/0045-7930(88)90040-0
[7] Alfven H (1953) Cosmical electrodynamics. Oxford University Press, Reprint · Zbl 0038.43201
[8] Todd L (1967) Hartmann flow in an annular channel. J Fluid Mech 28:371–384 · Zbl 0148.22604 · doi:10.1017/S0022112067002137
[9] Vidyanidhi V, Ramana Rao VV (1968) Hydromagnetic flow in a rotating straight pipe. J Phys Soc Jpn 25(6):1694–1700 · doi:10.1143/JPSJ.25.1694
[10] Nanda RS, Mohanty HK (1971) Hydromagnetic flow in a rotating channel. Appl Sci Res 24:65–78 · Zbl 0216.26203
[11] Acheson DJ, Hide R (1973) Hydromagnetics of rotating fluids. Rep Prog Phys 36:159–221 · doi:10.1088/0034-4885/36/2/002
[12] Mazumder BS (1977) Effect of wall conductances on hydromagnetic flow and heat transfer in a rotating channel. Acta Mech 28:85–99 · Zbl 0369.76092 · doi:10.1007/BF01208791
[13] Prasad VB, Rao VVR (1978) Hydromagnetic flow between two parallel porous walls in a rotating system. Def Sci J 28:51–58 · Zbl 0387.76085
[14] Bhat JP (1982) Heat transfer in MHD flow in a rotating channel. Czech J Phys 32(9):1050–1055 · doi:10.1007/BF01597176
[15] Singh SN, Tripathi DD (1987) Hodograph transformation in steady plane rotating MHD flows. Appl Sci Res 43(4):347–353 · Zbl 0612.76121 · doi:10.1007/BF00540568
[16] Kishore Kumar S, Thacker WI, Watson LT (1988) Magnetohydrodynamic flow and heat transfer about a rotating disk with suction and injection at the disk surface. Comput Fluids 16(2):183–193 · Zbl 0639.76119 · doi:10.1016/0045-7930(88)90005-9
[17] Nagy T, Demendy Z (1993) Influence of wall properties on Hartmann flow and heat transfer in a rotating system. Acta Phys Hung 7(2–4):291–310
[18] Ghosh SK (1993) Unsteady hydromagnetic flow in a rotating channel with oscillating pressure gradient. J Phys Soc Jpn 62(11):3893–3903 · doi:10.1143/JPSJ.62.3893
[19] Ghosh SK, Pop I (2002) A note on a hydromagnetic flow in a slowly rotating system in the presence of an inclined magnetic field. Magnetohydrodynamics 38(4):377–384
[20] Asghar SKH, Nadeem S, Hayat T (2004) Magnetohydrodynamic rotating flow of a second grade fluid with a given volume flow rate variation. Meccanica 39:483–488 · Zbl 1116.76471 · doi:10.1023/B:MECC.0000046336.76574.31
[21] Roy S, Takhar HS, Nath G (2004) Unsteady MHD flow on a rotating cone in a rotating fluid. Meccanica 39:271–283 · Zbl 1120.76368 · doi:10.1023/B:MECC.0000022847.28148.98
[22] Hayat T, Hameed MI, Asghar S, Siddiqui AM (2004) Some steady MHD flows of the second order fluid. Meccanica 39(4):345–355 · Zbl 1068.76571 · doi:10.1023/B:MECC.0000029365.39535.28
[23] Xu H, Liao S-H (2006) Series solutions of unsteady MHD flows above a rotating disk. Meccanica 41:599–609 · Zbl 1163.76452 · doi:10.1007/s11012-006-9006-x
[24] Asghar SKH, Hayat T (2007) The effect of the slip condition on unsteady flow due to non-coaxial rotations of disk and a fluid at infinity. Meccanica 42:141–148 · Zbl 1162.76409 · doi:10.1007/s11012-006-9027-5
[25] Lighthill Sir MJ (1960) Studies on MHD waves and other anisotropic wave motion. Phil Trans R Soc, Lond 252A:397–430 · Zbl 0097.20806
[26] Sato H (1961) The Hall effect in the viscous flow of ionized gas between parallel plates under transverse magnetic field. J Phys Soc Jpn 16(7):1427–1435 · Zbl 0112.42504 · doi:10.1143/JPSJ.16.1427
[27] Shang JS, Surzhikov ST, Kimmel R, Gaitonde D, Menart J, Hayes J (2005) Mechanisms of plasma actuators for hypersonic flow control. Prog Aerosp Sci 41(8):642–668 · doi:10.1016/j.paerosci.2005.11.001
[28] Fife J (1998) Hybrid-PIC Modeling and electrostatic probe survey of Hall thrusters. PhD Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology (MIT), USA
[29] Ishikwa M, Yuhara M, Fujino T (2007) Three-dimensional computation of magnetohydrodynamics in a weakly ionized plasma with strong MHD interaction. J Mater Process Technol 181(1–3):254–259 · doi:10.1016/j.jmatprotec.2006.03.032
[30] Nishihara M, Jiang N, Rich JW, Lempert WR, Adamovich IV, Gogineni S (2005) Low-temperature supersonic boundary layer control using repetitively pulsed magnetohydrodynamic forcing. Phys Fluids 17:106102–106112 · Zbl 1188.76112 · doi:10.1063/1.2084227
[31] Seth GS, Ghosh SK (1986) Effect of Hall currents on unsteady hydromagnetic flow in a rotating channel with oscillating pressure gradient. Indian J Pure Appl Math 17(6):819–826 · Zbl 0593.76115
[32] Linga Raju T, Ramana Rao VV (1993) Hall effects on temperature distribution in a rotating ionized hydromagnetic flow between parallel wall. Int J Eng Sci 31(7):1073–1091 · Zbl 0788.76098 · doi:10.1016/0020-7225(93)90115-B
[33] Ram PC, Singh A, Takhar HS (1995) Effects of Hall and ionslip currents on convective flow in a rotating fluid with wall temperature oscillation. Magnetohydrodyn Plasma Res J 5:1–16
[34] Takhar HS, Jha BK (1998) Effects of Hall and ionslip currents on MHD flow past an impulsively started plate in a rotating system. Magnetohydrodyn Plasma Res J 8:61–72
[35] Takhar HS, Chamkha AJ, Nath G (2002) MHD flow over a moving plate in a rotating fluid with magnetic field, Hall currents and free stream velocity. Int J Eng Sci 40:1511–1527 · Zbl 1211.76157 · doi:10.1016/S0020-7225(02)00016-2
[36] Ghosh SK (2002) Effects of Hall current on MHD Couette flow in a rotating system with arbitrary magnetic field. Czech J Phys 52(1):51–63 · doi:10.1023/A:1013913730086
[37] Ghosh SK, Pop I (2003) Hall effects on unsteady hydromagnetic flow in a rotating system with oscillating pressure gradient. Int J Appl Mechan Eng 8(1):43–56 · Zbl 1148.76360
[38] Ghosh SK, Pop I (2004) Hall effects on MHD plasma Couette flow in a rotating environment. Int J Appl Mech Eng 9(2):293–305 · Zbl 1195.76442
[39] Hayat T, Wang Y, Hutter K (2004) Hall effects on the unsteady hydromagnetic oscillatory flow of a second grade fluid. Int J Non-Linear Mech 39(6):1027–1037 · Zbl 1348.76187 · doi:10.1016/S0020-7462(03)00094-5
[40] Naroua H (2007) A computational solution of hydromagnetic-free convective flow past a vertical plate in a rotating heat-generating fluid with Hall and ion-slip currents. Int J Numer Methods Fluids 53(10):1647–1658 · Zbl 1113.76099 · doi:10.1002/fld.1382
[41] Naroua H, Takhar HS, Ram PC, Beg TA, Anwar Beg O, Bhargava R (2007) Transient rotating hydromagnetic partially-ionized heat-generating gas dynamic flow with Hall/Ion-slip current effects: finite element analysis. Int J Fluid Mech Res 34(6):493–505 · doi:10.1615/InterJFluidMechRes.v34.i6.10
[42] Bég OA, Zueco J, Takhar HS (2009) Unsteady magnetohydrodynamic Hartmann–Couette flow and heat transfer in a Darcian channel with Hall current, ionslip, viscous and Joule heating effects: Network numerical solutions. Commun Nonlinear Sci Numer Simul 14:1082–1097 · doi:10.1016/j.cnsns.2008.03.015
[43] Sutton GW, Sherman A (1965) Engineering magnetohydrodynamics. MacGraw-Hill, New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.