×

Forced oscillations in an exothermic chemical reaction. (English) Zbl 0822.34034

Summary: We study nonlinear behaviour in a model chemical reaction scheme (proposed by Sal’nikov), in which a single chemical species undergoes a two-stage, first-order decay process. The second stage is exothermic and has a temperature-dependent rate, and as a result, spontaneous oscillations in the temperature and the concentration of an intermediate chemical are known to be possible. An additional oscillation is imposed on the system by varying the ambient temperature in a sinusoidal manner.
Primary resonance occurs when the forcing frequency coincides with the frequency of the natural oscillations in this scheme and an infinite sequence of super- and subharmonic resonances is also present. Chaos is possible for appropriate parameter values and may result either from the Feigenbaum period-doubling cascade, or else as a result of the Ruelle- Takens approach through quasi-periodicity.

MSC:

34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
92E20 Classical flows, reactions, etc. in chemistry
34C23 Bifurcation theory for ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
Full Text: DOI

References:

[1] Baker G. L, Chaotic Dynamics-an Introduction (1990) · Zbl 0712.58002
[2] DOI: 10.1016/0009-2509(66)85023-6 · doi:10.1016/0009-2509(66)85023-6
[3] Forbes L. K, Proceedings of the Royal Society of London Series A 430 pp 641–
[4] DOI: 10.1137/0151069 · Zbl 0743.70022 · doi:10.1137/0151069
[5] DOI: 10.1017/S0334270000009103 · Zbl 0797.35084 · doi:10.1017/S0334270000009103
[6] Forbes L. K, Proceedings of the Royal Society of London, Series A pp 591–
[7] Gray , B. F and Roberts , M.J . Proceedings of the Royal Society of London, Series A. pp.391–402. · Zbl 0635.34027
[8] Gray B. F, 26th Loss Prevention Symposium, American Institute of Chemical Engineering
[9] Gray P, Proceedings of the Royal Society of London, Series A pp 1–
[10] DOI: 10.1016/0010-2180(89)90009-6 · doi:10.1016/0010-2180(89)90009-6
[11] Gray P, chmical Oscillations and Instabilities. Non-linear Chemical Kinetics (1990)
[12] Griffiths , J. F., Advances in Chemistry and Physics 64 pp 203– (1986)
[13] Kay , S. R and Scott , S. K . Proceedings of the Royal Society of London, Series A. pp.342–359.
[14] Kevrekidis I. G, Chemical Engineering Science pp 1549–
[15] DOI: 10.1007/BF02459637 · Zbl 0761.92041 · doi:10.1007/BF02459637
[16] DOI: 10.1137/0522099 · Zbl 0744.58059 · doi:10.1137/0522099
[17] DOI: 10.1016/0009-2509(72)87051-9 · doi:10.1016/0009-2509(72)87051-9
[18] DOI: 10.1017/CBO9780511608773 · doi:10.1017/CBO9780511608773
[19] Sal’nikov I, Zh. fiz.Khim 23 pp 258– (1949)
[20] Scott S. K, Chemical Chaos (1991)
[21] DOI: 10.1016/0898-1221(87)90045-9 · Zbl 0632.65088 · doi:10.1016/0898-1221(87)90045-9
[22] Seydel R, From Equilibrium to Chaos:Practical Bifurcation and Stability Analysis (1988)
[23] DOI: 10.1007/978-3-642-93046-1 · doi:10.1007/978-3-642-93046-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.