×

An object-oriented geometric engine design for discontinuities in unfitted/immersed/enriched finite element methods. (English) Zbl 1540.74154

Summary: In this work, an object-oriented geometric engine is proposed to solve problems with discontinuities, for instance, material interfaces and cracks, by means of unfitted, immersed, or enriched finite element methods (FEMs). Both explicit and implicit representations, such as geometric entities and level sets, are introduced to describe configurations of discontinuities. The geometric engine is designed in an object-oriented way and consists of several modules. For efficiency, a \(k\)-d tree data structure that partitions the background mesh is constructed for detecting cut elements whose neighbors are found by means of a dual graph structure. Moreover, the implementation for creating enriched nodes, integration elements, and physical groups is described in detail, and the corresponding pseudo-code is also provided. The complexity and efficiency of the geometric engine are investigated by solving 2-D and 3-D discontinuous models. The capability of the geometric engine is demonstrated on several numerical examples. Topology optimization and problems with intersecting discontinuities are handled with enriched FEMs, where enriched discretizations obtained from the geometric engine are used for the analysis. Furthermore, polycrystalline structures that overlap with an unfitted mesh are considered, where integration elements are created so they align with grain boundaries. Another example shows that the Stanford bunny, which is discretized by a surface mesh with triangular elements, can be fully immersed into a 3-D background mesh. Finally, we share a list of main findings and conclude that the proposed geometric engine is general, robust, and efficient.
{© 2022 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd.}

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74S99 Numerical and other methods in solid mechanics
74E15 Crystalline structure
68N19 Other programming paradigms (object-oriented, sequential, concurrent, automatic, etc.)

References:

[1] CottrellJA, HughesTJ, BazilevsY. Isogeometric Analysis: Toward Integration of CAD and FEA. 1st ed.John Wiley & Sons, Ltd; 2009. · Zbl 1378.65009
[2] DuQ, WangD. Recent progress in robust and quality Delaunay mesh generation. J Comput Appl Math. 2006;195(1‐2):8‐23. · Zbl 1096.65016
[3] SwensonDV, IngraffeaAR. Modeling mixed‐mode dynamic crack propagation using finite elements: theory and applications. Comput Mech. 1988;3(6):381‐397. · Zbl 0663.73074
[4] BouchardPO, BayF, ChastelY, TovenaI. Crack propagation modelling using an advanced remeshing technique. Comput Methods Appl Mech Eng. 2000;189(3):723‐742. · Zbl 0993.74060
[5] BouchardP‐O, BayF, ChastelY. Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria. Comput Methods Appl Mech Eng. 2003;192(35‐36):3887‐3908. · Zbl 1054.74724
[6] BugedaG, OliverJ. A general methodology for structural shape optimization problems using automatic adaptive remeshing. Int J Numer Methods Eng. 1993;36(18):3161‐3185. · Zbl 0780.73049
[7] LiuZ, KorvinkJG. Adaptive moving mesh level set method for structure topology optimization. Eng Optim. 2008;40(6):529‐558.
[8] Salazar de TroyaMA, TortorelliDA. Three‐dimensional adaptive mesh refinement in stress‐constrained topology optimization. Struct Multidiscip Optim. 2020;62(5):2467‐2479.
[9] SaksonoPH, DettmerWG, PerićD. An adaptive remeshing strategy for flows with moving boundaries and fluid-Structure interaction. Int J Numer Methods Eng. 2007;71(9):1009‐1050. · Zbl 1194.76140
[10] MasudA, BhanabhagvanwalaM, KhurramRA. An adaptive mesh rezoning scheme for moving boundary flows and fluid-Structure interaction. Comput Fluids. 2007;36(1):77‐91. · Zbl 1181.76108
[11] RohitV, DevendraD, BhaskarP. The study of elastic modulus and thermal conductivity of different fiber cross‐section of fiber‐reinforced composite in ANSYS. Proceedings of the IOP Conference Series: Materials Science and Engineering; Vol. 1013; 2021:012015; IOP Publishing.
[12] RiemselaghK, VierendeelsJ, DickE. Two‐dimensional incompressible Navier‐Stokes calculations in complex‐shaped moving domains. J Eng Math. 1998;34(1‐2):57‐73. · Zbl 0917.76065
[13] WuL, BogyDB. Unstructured triangular mesh generation techniques and a finite volume numerical scheme for slider air bearing simulation with complex shaped rails. IEEE Trans Mag. 1999;35(5):2421‐2423.
[14] LiZ, LinT, LinY, RogersRC. An immersed finite element space and its approximation capability. Numer Methods Part Differ Equ. 2004;20(3):338‐367. · Zbl 1057.65085
[15] KafafyR, LinT, LinY, WangJ. Three‐dimensional immersed finite element methods for electric field simulation in composite materials. Int J Numer Methods Eng. 2005;64(7):940‐972. · Zbl 1122.78018
[16] BarrettJW, ElliottCM. Fitted and unfitted finite‐element methods for elliptic equations with smooth interfaces. IMA J Numer Anal. 1987;7(3):283‐300. · Zbl 0629.65118
[17] NobleDR, NewrenEP, LechmanJB. A conformal decomposition finite element method for modeling stationary fluid interface problems. Int J Numer Methods Fluids. 2010;63(6):725‐742. · Zbl 1423.76266
[18] KramerRM, NobleDR. A conformal decomposition finite element method for arbitrary discontinuities on moving interfaces. Int J Numer Methods Eng. 2014;100(2):87‐110. · Zbl 1352.74383
[19] FriesTP. Higher‐order conformal decomposition FEM (CDFEM). Comput Methods Appl Mech Eng. 2018;328:75‐98. · Zbl 1439.65164
[20] BurmanE, ClausS, HansboP, LarsonMG, MassingA. CutFEM: discretizing geometry and partial differential equations. Int J Numer Methods Eng. 2015;104(7):472‐501. · Zbl 1352.65604
[21] MoësN, DolbowJ, BelytschkoT. A finite element method for crack growth without remeshing. Int J Numer Methods Eng. 1999;46(1):131‐150. · Zbl 0955.74066
[22] DuarteCA, HamzehON, LiszkaTJ, TworzydloWW. A generalized finite element method for the simulation of three‐dimensional dynamic crack propagation. Comput Methods Appl Mech Eng. 2001;190(15‐17):2227‐2262. · Zbl 1047.74056
[23] MelenkJM, BabuškaI. The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng. 1996;139:289‐314. · Zbl 0881.65099
[24] BabuškaI, MelenkJM. The partition of unity method. Int J Numer Methods Eng. 1997;40:727‐758. · Zbl 0949.65117
[25] ChessaJ, WangH, BelytschkoT. On the construction of blending elements for local partition of unity enriched finite elements. Int J Numer Methods Eng. 2003;57(7):1015‐1038. · Zbl 1035.65122
[26] FriesTP. A corrected XFEM approximation without problems in blending elements. Int J Numer Methods Eng. 2008;75(5):503‐532. · Zbl 1195.74173
[27] BabuškaI, BanerjeeU, OsbornJE. Survey of meshless and generalized finite element methods: a unified approach. Acta Numer. 2003;12:1‐125. · Zbl 1048.65105
[28] MoësN, BéchetE, TourbierM. Imposing Dirichlet boundary conditions in the extended finite element method. Int J Numer Methods Eng. 2006;67(12):1641‐1669. · Zbl 1113.74072
[29] BabuškaI, BanerjeeU. Stable generalized finite element method (SGFEM). Comput Methods Appl Mech Eng. 2012;201-204:91‐111. · Zbl 1239.74093
[30] GuptaV, DuarteCA, BabuškaI, BanerjeeU. A stable and optimally convergent generalized FEM (SGFEM) for linear elastic fracture mechanics. Comput Methods Appl Mech Eng. 2013;266:23‐39. · Zbl 1286.74102
[31] KergreneK, BabuškaI, BanerjeeU. Stable generalized finite element method and associated iterative schemes; application to interface problems. Comput Methods Appl Mech Eng. 2016;305:1‐36. · Zbl 1425.74472
[32] SoghratiS, AragónAM, ArmandoDC, GeubellePH. An interface‐enriched generalized FEM for problems with discontinuous gradient fields. Int J Numer Methods Eng. 2012;89:991‐1008. · Zbl 1242.76138
[33] van denBoomSJ, ZhangJ, vanKeulenF, AragónAM. An interface‐enriched generalized finite element method for level set‐based topology optimization. Struct Multidiscip Optim. 2020;63(1):1‐20.
[34] SoghratiS. Hierarchical interface‐enriched finite element method: an automated technique for mesh‐independent simulations. J Comput Phys. 2014;275:41‐52. · Zbl 1349.82030
[35] AragónAM, LiangB, AhmadianH, SoghratiS. On the stability and interpolating properties of the hierarchical Interface‐enriched finite element method. Comput Methods Appl Mech Eng. 2020;362:112671. · Zbl 1439.65143
[36] van denBoomSJ, ZhangJ, vanKeulenF, AragónAM. A stable interface‐enriched formulation for immersed domains with strong enforcement of essential boundary conditions. Int J Numer Methods Eng. 2019;120(10):1163‐1183. · Zbl 07841259
[37] Cuba‐RamosA, AragónAM, SoghratiS, GeubellePH, MolinariJ. A new formulation for imposing Dirichlet boundary conditions on non‐matching meshes. Int J Numer Methods Eng. 2015;103(6):430‐444. · Zbl 1352.65488
[38] van denBoomSJ, vanKeulenF, AragónAM. Fully decoupling geometry from discretization in the Bloch-Floquet finite element analysis of phononic crystals. Comput Methods Appl Mech Eng. 2021;382:113848. · Zbl 1506.74082
[39] LiuD, van denBoomSJ, SimoneA, AragónA. An interface‐enriched generalized finite element formulation for locking‐free coupling of non‐conforming discretizations and contact; 2022. · Zbl 1498.74072
[40] ZhangJ, vanKeulenF, AragónAM. On tailoring fracture resistance of brittle structures: a level set interface‐enriched topology optimization approach. Comput Methods Appl Mech Eng. 2022;388:114189. · Zbl 1507.74434
[41] AragónAM, SimoneA. The discontinuity‐enriched finite element method. Int J Numer Methods Eng. 2017;112(11):1589‐1613. · Zbl 07867156
[42] ZhangJ, BoomSJ, KeulenF, AragónAM. A stable discontinuity‐enriched finite element method for 3‐D problems containing weak and strong discontinuities. Comput Methods Appl Mech Eng. 2019;355:1097‐1123. · Zbl 1441.74284
[43] LiuD, ZhangJ, AragónAM, SimoneA. The discontinuity‐enriched finite element method for multiple intersecting discontinuities. Int J Numer Methods Eng.
[44] YanY. A Discontinuity‐Enriched Finite Element Method for Dynamic Fracture in Brittle Materials. Master’s thesis; 2021.
[45] De LazzariE, BoomSJ, ZhangJ, KeulenF, AragónAM. A critical view on the use of non‐uniform rational B‐splines to improve geometry representation in enriched finite element methods. Int J Numer Methods Eng. 2021;122(5):1195‐1216. · Zbl 07863108
[46] SabetFA, RaeisiNA, HamedE, JasiukI. Modelling of bone fracture and strength at different length scales: a review. Interface Focus. 2016;6(1):20150055.
[47] ErdenS, HoK. Fiber reinforced composites. In: SeydibeyogluMO (ed.), MohantyAK (ed.), MisraM (ed.), eds. Fiber Technology for Fiber‐Reinforced Composites, Woodhead Publishing Series in Composites Science and Engineering. Vol 3. Woodhead Publishing; 2017:51‐79.
[48] SukumarN, ChoppDL, MoësN, BelytschkoT. Modeling holes and inclusions by level sets in the extended finite‐element method. Comput Methods Appl Mech Eng. 2001;190(46‐47):6183‐6200. · Zbl 1029.74049
[49] TranquartB, LadevèzeP, BarangerE, MouretA. A computational approach for handling complex composite microstructures. Compos Struct. 2012;94(6):2097‐2109.
[50] SoghratiS, GeubellePH. A 3D interface‐enriched generalized finite element method for weakly discontinuous problems with complex internal geometries. Comput Methods Appl Mech Eng. 2012;217:46‐57. · Zbl 1253.74117
[51] SimoneA, DuarteCA, GiessenE. A generalized finite element method for polycrystals with discontinuous grain boundaries. Int J Numer Methods Eng. 2006;67(8):1122‐1145. · Zbl 1113.74076
[52] SietsmaJ. Nucleation and growth during the austenite‐to‐ferrite phase transformation in steels after plastic deformation. In: Pereloma E, Edmonds DV, eds. Phase Transformations in Steels. Elsevier; 2012:505‐526.
[53] ShenJ. Advanced Ceramics for Dentistry. Butterworth‐Heinemann; 2013.
[54] YiD, WangY, ErveOMJ, et al. Emergent electric field control of phase transformation in oxide superlattices. Nat Commun. 2020;11(1):1‐8.
[55] RuanY, LiuJC, RichmondO. A deforming finite element method for analysis of alloy solidification problems. Finite Elem Anal Des. 1993;13(1):49‐63. · Zbl 0779.73067
[56] JiH, ChoppD, DolbowJE. A hybrid extended finite element/level set method for modeling phase transformations. Int J Numer Methods Eng. 2002;54(8):1209‐1233. · Zbl 1098.76572
[57] MerleR, DolbowJ. Solving thermal and phase change problems with the extended finite element method. Comput Mech. 2002;28(5):339‐350. · Zbl 1073.76589
[58] CosimoA, FachinottiVíctor, CardonaA. An enrichment scheme for solidification problems. Comput Mech. 2013;52(1):17‐35. · Zbl 1308.80004
[59] StapórP. The XFEM for nonlinear thermal and phase change problems. Int J Numer Methods Heat Fluid Flow. 2015;25(2):400‐421. · Zbl 1356.80052
[60] LiM, ChaoukiH, RobertJ‐L, ZieglerD, MartinD, FafardM. Numerical simulation of Stefan problem with ensuing melt flow through XFEM/level set method. Finite Elem Anal Des. 2018;148:13‐26.
[61] FaghriA, ZhangY. In: Faghri A, Zhang Y, eds. Transport phenomena in multiphase systems. Elsevier; 2006.
[62] PanL, WebbSW, OldenburgCM. Analytical solution for two‐phase flow in a wellbore using the drift‐flux model. Adv Water Resour. 2011;34(12):1656‐1665.
[63] WallisGB. One‐Dimensional Two‐Phase Flow. Dover Publications; 2020.
[64] MassoudM.Engineering Thermofluids. Thermodynamics, Fluid Mechanics, and Heat Transfer. Springer; 2007.
[65] ChessaJ, BelytschkoT. An enriched finite element method and level sets for axisymmetric two‐phase flow with surface tension. Int J Numer Methods Eng. 2003;58(13):2041‐2064. · Zbl 1032.76591
[66] ChessaJ, BelytschkoT. An extended finite element method for two‐phase fluids. J Appl Mech. 2003;70(1):10‐17. · Zbl 1110.74391
[67] SauerlandH, FriesT‐P. The stable XFEM for two‐phase flows. Comput Fluids. 2013;87:41‐49. · Zbl 1290.76073
[68] ZhuangZ, LiuZ, ChengB, LiaoJ. Extended Finite Element Method: Tsinghua University Press Computational Mechanics Series. Academic Press; 2014.
[69] ZienkiewiczOC, TaylorRL, NithiarasuP. Ch. 13 ‐ Fluid-Structure interaction. In: ZienkiewiczOC (ed.), TaylorRL (ed.), NithiarasuP (ed.), eds. The Finite Element Method for Fluid Dynamics. 7th ed.Butterworth‐Heinemann; 2014:423‐449.
[70] TakashiN. ALE finite element computations of fluid‐structure interaction problems. Comput Methods Appl Mech Eng. 1994;112(1‐4):291‐308. · Zbl 0845.76049
[71] KuhlE, HulshoffS, De BorstR. An arbitrary Lagrangian Eulerian finite‐element approach for fluid-Structure interaction phenomena. Int J Numer Methods Eng. 2003;57(1):117‐142. · Zbl 1062.74617
[72] RubensteinD (ed.), YinW (ed.), FrameMD (ed.), eds. Biofluid Mechanics: An Introduction To Fluid Mechanics, Macrocirculation and Microcirculation. Academic Press; 2015. · Zbl 1325.92002
[73] GerstenbergerA, WallWA. An extended finite element method/Lagrange multiplier based approach for fluid-Structure interaction. Comput Methods Appl Mech Eng. 2008;197(19‐20):1699‐1714. · Zbl 1194.76117
[74] GerstenbergerA, WallWA. Enhancement of fixed‐grid methods towards complex fluid-Structure interaction applications. Int J Numer Methods Fluids. 2008;57(9):1227‐1248. · Zbl 1338.74038
[75] JenkinsN, MauteK. Level set topology optimization of stationary fluid‐structure interaction problems. Struct Multidiscip Optim. 2015;52(1):179‐195.
[76] CantwellWJ, MortonJ. The significance of damage and defects and their detection in composite materials: a review. J Strain Anal Eng Des. 1992;27(1):29‐42.
[77] NaebeM, AbolhasaniMM, KhayyamH, AminiA, FoxB. Crack damage in polymers and composites: a review. Polym Rev. 2016;56(1):31‐69.
[78] SukumarN, MoësN, MoranB, BelytschkoT. Extended finite element method for three‐dimensional crack modelling. Int J Numer Methods Eng. 2000;48(11):1549‐1570. · Zbl 0963.74067
[79] MoësN, BelytschkoT. Extended finite element method for cohesive crack growth. Eng Fract Mech. 2002;69(7):813‐833.
[80] CoxJV. An extended finite element method with analytical enrichment for cohesive crack modeling. Int J Numer Methods Eng. 2009;78(1):48‐83. · Zbl 1183.74266
[81] HullD, BaconDJ. Introduction to Dislocations. Butterworth‐Heinemann; 2011.
[82] LagerlofP. Crystal Dislocations: Their Impact on Physical Properties of Crystals. Crystals. 2018;8(11):413.
[83] VenturaG, MoranB, BelytschkoT. Dislocations by partition of unity. Int J Numer Methods Eng. 2005;62(11):1463‐1487. · Zbl 1078.74665
[84] GracieR, VenturaG, BelytschkoT. A new fast finite element method for dislocations based on interior discontinuities. Int J Numer Methods Eng. 2007;69(2):423‐441. · Zbl 1194.74402
[85] RobbinsJ, VothTE. Modeling dislocations in a polycrystal using the generalized finite element method. Int J Theor Appl Multisc Mech. 2011;2(2):95‐110.
[86] ShuttleDA, SmithIM. Numerical simulation of shear band formation in soils. Int J Numer Anal Methods Geomech. 1988;12(6):611‐626.
[87] RudnickiJW, RiceJR. Conditions for the localization of deformation in pressure‐sensitive dilatant materials. J Mech Phys Solids. 1975;23(6):371‐394.
[88] MeyersMA, NesterenkoVF, LaSalviaJC, XueQ. Shear localization in dynamic deformation of materials: microstructural evolution and self‐organization. Mater Sci Eng A. 2001;317(1‐2):204‐225.
[89] HumphreysFJ, HatherlyM. Recrystallization and Related Annealing Phenomena. Elsevier; 2012.
[90] GilmanJJ. Micromechanics of shear banding. Mech Mater. 1994;17(2‐3):83‐96.
[91] DesruesJ, LanierJ, StutzP. Localization of the deformation in tests on sand sample. Eng Fract Mech. 1985;21(4):909‐921.
[92] SamaniegoE, BelytschkoT. Continuum-Discontinuum modelling of shear bands. Int J Numer Methods Eng. 2005;62(13):1857‐1872. · Zbl 1121.74476
[93] MikaeiliE, LiuP. Numerical modeling of shear band propagation in porous plastic dilatant materials by XFEM. Theor Appl Fract Mech. 2018;95:164‐176.
[94] AreiasPMA, BelytschkoT. Two‐scale shear band evolution by local partition of unity. Int J Numer Methods Eng. 2006;66(5):878‐910. · Zbl 1110.74841
[95] AreiasPMA, BelytschkoT. Two‐scale method for shear bands: thermal effects and variable bandwidth. Int J Numer Methods Eng. 2007;72(6):658‐696. · Zbl 1194.74355
[96] FabriA, GiezemanG‐J, KettnerL, SchirraS, SchönherrS. On the design of CGAL a computational geometry algorithms library. Softw Pract Exp. 2000;30(11):1167‐1202. · Zbl 1147.68781
[97] RenG, YounisRM. A Coupled XFEM‐EDFM numerical model for hydraulic fracture propagation. ECMOR XVI‐16th European Conference on the Mathematics of Oil Recovery, European Association of Geoscientists & Engineers; Vol. 1, 2018:1‐16.
[98] MassingA, LarsonMG, LoggA. Efficient implementation of finite element methods on nonmatching and overlapping meshes in three dimensions. SIAM J Sci Comput. 2013;35(1):C23‐C47. · Zbl 1264.65194
[99] PopinetS. The GNU Triangulated Surface Library. GTS website; 2004. https://gts.sourceforge.net/.
[100] SukumarN, PrévostJ‐H. Modeling quasi‐static crack growth with the extended finite element method Part I: computer implementation. Int J Solids Struct. 2003;40(26):7513‐7537. · Zbl 1063.74102
[101] PereiraJP, DuarteCA, GuoyD, JiaoX. hp‐Generalized FEM and crack surface representation for non‐planar 3‐D cracks. Int J Numer Methods Eng. 2009;77(5):601‐633. · Zbl 1156.74383
[102] SoghratiS, AhmadianH. 3D hierarchical interface‐enriched finite element method: implementation and applications. J Comput Phys. 2015;299:45‐55. · Zbl 1352.65551
[103] BřezinaJ, ExnerP. Fast algorithms for intersection of non‐matching grids using Plücker coordinates. Comput Math Appl. 2017;74(1):174‐187. · Zbl 1375.65165
[104] YangM, NagarajanA, LiangB, SoghratiS. New algorithms for virtual reconstruction of heterogeneous microstructures. Comput Methods Appl Mech Eng. 2018;338:275‐298. · Zbl 1440.74482
[105] ShewchukJR. Triangle: engineering a 2D quality mesh generator and Delaunay triangulator. Proceedings of the Workshop on Applied Computational Geometry; 1996:203‐222; Springer, New York.
[106] SiH. TetGen, a Delaunay‐based quality tetrahedral mesh generator. ACM Trans Math Softw (TOMS). 2015;41(2):1‐36. · Zbl 1369.65157
[107] GeuzaineC, RemacleJ‐F. Gmsh: a three‐dimensional finite element mesh generator with built‐in pre‐ and post‐processing facilities. Int J Numer Methods Eng. 2009;79(11):1309‐1331. · Zbl 1176.74181
[108] OsherS, SethianJA. Fronts propagating with curvature‐dependent speed: algorithms based on Hamilton‐Jacobi formulations. J Comput Phys. 1988;79(1):12‐49. · Zbl 0659.65132
[109] SethianJA, SmerekaP. Level set methods for fluid interfaces. Annu Rev Fluid Mech. 2003;35(1):341‐372. · Zbl 1041.76057
[110] OsherS, ParagiosN. Geometric Level Set Methods in Imaging, Vision, and Graphics. Springer Science & Business Media; 2003. · Zbl 1027.68137
[111] WangMY, WangX, GuoD. A level set method for structural topology optimization. Comput Methods Appl Mech Eng. 2003;192(1‐2):227‐246. · Zbl 1083.74573
[112] AllaireG, JouveF, ToaderA‐M. Structural optimization using sensitivity analysis and a level‐set method. J Comput Phys. 2004;194(1):363‐393. · Zbl 1136.74368
[113] ChernIL, ShuYC. A coupling interface method for elliptic interface problems. J Comput Phys. 2007;225(2):2138‐2174. · Zbl 1123.65108
[114] WendlandH. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math. 1995;4(1):389‐396. · Zbl 0838.41014
[115] WangS, WangMY. Radial basis functions and level set method for structural topology optimization. Int J Numer Methods Eng. 2006;65(12):2060‐2090. · Zbl 1174.74331
[116] ChewLP. Constrained Delaunay triangulations. Algorithmica. 1989;4(1):97‐108. · Zbl 0664.68042
[117] SiH. A Quality Tetrahedral Mesh Generator and Three‐Dimensional Delaunay Triangulator. Weierstrass Institute for Applied Analysis and Stochastic; 2006:81.
[118] TurkG, LevoyM. Zippered polygon meshes from range images. In Proceedings of the 21st annual conference on Computer graphics and interactive techniques. 1994;311‐318.
[119] GuptaV, DuarteCA, BabuškaI, BanerjeeU. Stable GFEM (SGFEM): improved conditioning and accuracy of GFEM/XFEM for three‐dimensional fracture mechanics. Comput Methods Appl Mech Eng. 2015;289:355‐386. · Zbl 1423.74886
[120] GarzonJ, O’HaraP, DuarteCA, ButtlarWG. Improvements of explicit crack surface representation and update within the generalized finite element method with application to three‐dimensional crack coalescence. Int J Numer Methods Eng. 2014;97(4):231‐273. · Zbl 1352.74354
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.