×

\(hp\)-Version analysis for arbitrarily shaped elements on the boundary discontinuous Galerkin method for Stokes systems. (English) Zbl 07896242

Summary: In the present work, we examine and analyze an \(hp\)-version interior penalty discontinuous Galerkin finite element method for the numerical approximation of a steady fluid system on computational meshes consisting of polytopic elements on the boundary. This approach is based on the discontinuous Galerkin method, enriched by arbitrarily shaped elements techniques as has been introduced in [A. Cangiani et al., Math. Comput. 91, No. 333, 1–35 (2022; Zbl 1484.65295)]. In this framework, and employing extensions of trace, Markov-type, and \(H^1/L^2\)-type inverse estimates to arbitrary element shapes, we examine a stationary Stokes fluid system enabling the proof of the inf/sup condition and the \(hp\)- a priori error estimates, while we investigate the optimal convergence rates numerically. This approach recovers and integrates the flexibility and superiority of the discontinuous Galerkin methods for fluids whenever geometrical deformations are taking place by degenerating the edges, facets, of the polytopic elements only on the boundary, combined with the efficiency of the \(hp\)-version techniques based on arbitrarily shaped elements without requiring any mapping from a given reference frame.

MSC:

35Q35 PDEs in connection with fluid mechanics
76M10 Finite element methods applied to problems in fluid mechanics
35Q30 Navier-Stokes equations

Citations:

Zbl 1484.65295

Software:

ngsxfem; NGSolve

References:

[1] A. Aretaki and E. N. Karatzas. Random geometries for optimal control PDE problems based on fictitious domain FEMs and cut elements. Journal of Computational and Applied Math-ematics, 412:114286, 2022. · Zbl 1493.65187
[2] A. Aretaki, E. N. Karatzas, and G. Katsouleas. Equal Higher Order Analysis of an Unfitted Discontinuous Galerkin Method for Stokes Flow Systems. J. Sci. Comput., 91(2):48, 2022. · Zbl 1497.65217
[3] E. Artioli, A. Sommariva, and M. Vianello. Algebraic cubature on polygonal elements with a circular edge. Computers & Mathematics with Applications, 79(7):2057-2066, 2020. Ad-vanced Computational methods for PDEs. · Zbl 1454.65159
[4] A. Baker, W. N. Jureidini, and O. A. Karakashian. Piecewise solenoidal vector fields and the Stokes problem. SIAM J. Numer. Anal., 27:1466-1485, 1990. · Zbl 0719.76047
[5] J. W. Barrett and C. M. Elliott. Fitted and Unfitted Finite-Element Methods for Elliptic Equations with Smooth Interfaces. IMA Journal of Numerical Analysis, 7(3):283-300, 07 1987. · Zbl 0629.65118
[6] P. Bastian and C. Engwer. An unfitted finite element method using discontinuous Galerkin. J. Numer. Meth. Engrg., 79:1557-1576, 2009. · Zbl 1176.65131
[7] P. Bastian, C. Engwer, J. Fahlke, and O. Ippisch. An unfitted discontinuous galerkin method for pore-scale simulations of solute transport. Math. Comput. Simulat., 81:2051-2061, 2011. · Zbl 1309.76120
[8] L. Beirao Da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, and A. Russo. Ba-sic principles of virtual element methods. Mathematical Models and Methods in Applied Sciences, 23(01):199-214, 2013. · Zbl 1416.65433
[9] L. Beirao Da Veiga, K. Lipnikov, and G. Manzini. The mimetic finite difference method for elliptic problems. MS&A Modeling, Simulation and Applications Springer, Cham, 2014. · Zbl 1286.65141
[10] W. Bo and J. W. Grove. volume of fluid method based ghost fluid method for compressible multi-fluid flows. Computers & Fluids, 90:113-122, 2014. · Zbl 1391.76524
[11] E. Burman and P. Hansbo. Fictitious domain finite element methods using cut elements II. A stabilized Nitsche method, Appl. Num. Math., 62(4):328-341, 2012. · Zbl 1316.65099
[12] E. Burman and P. Hansbo. Fictitious domain methods using cut elements: III. A stabilized Nitsche method for Stokes problem. ESAIM: Math. Model. Numer. Anal. 48(3), 859-874 (2014), 48(3):859-874, 2014. · Zbl 1416.65437
[13] A. Cangiani, Z. Dong, and E. H. Georgoulis. hp-Version discontinuous Galerkin methods on essentially arbitrarily-shaped elements. Math. Comput., 91:1-35, 2022. · Zbl 1484.65295
[14] A. Cangiani, Z. Dong, E.H. Georgoulis, and P. Houston. hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes. SpringerBriefs in Mathematics. Springer In-ternational Publishing, 2017. · Zbl 1382.65307
[15] B. Cockburn, J. Gopalakrishnan, and R. Lazarov. Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems. SIAM Journal on Numerical Analysis, 47(2):1319-1365, 2009. · Zbl 1205.65312
[16] B. Cockburn, G. Kanschat, D. Schötzau, and C. Schwab. Local discontinuous Galerkin meth-ods for the Stokes system. SIAM J. Numer. Anal, 40:319-343, 2002. · Zbl 1032.65127
[17] D. A. Di Pietro and A. Ern. Mathematical aspects of discontinuous Galerkin methods, volume 69. Springer, 2012. · Zbl 1231.65209
[18] D. A. Di Pietro and A. Ern. A hybrid high-order locking-free method for linear elasticity on general meshes. Computer Methods in Applied Mechanics and Engineering, 283:1-21, 2015. · Zbl 1423.74876
[19] H. Dong, B. Wang, Z. Xie, and L. Wang. An unfitted hybridizable discontinuous Galerkin method for the Poisson interface problem and its error analysis. IMA J. Numer. Anal., 37:444-476, 2016. · Zbl 1433.65287
[20] Z. Dong. Discontinuous galerkin methods for the biharmonic problem on polygonal and poly-hedral meshes. International Journal of Numerical Analysis and Modeling, Volume 16:825-846, 2019. · Zbl 1434.65249
[21] Z. Dong, E. H. Georgoulis, and Kapas T. GPU-accelerated discontinuous Galerkin methods on polytopic meshes. SIAM J. Sci. Comput., 43:C312-C334, 2021. · Zbl 1528.65105
[22] Z. Dong and L. Mascotto. hp-optimal interior penalty discontinuous Galerkin methods for the biharmonic problem. arXiv preprint arXiv:2212.03735, 2022.
[23] M. Duprez and A. Lozinski. ϕ-fem a finite element method on domains defined by level-sets. 2019. arXiv: 1901.03966v3.
[24] C. Engwer, S. May, A. Nüßing, and F. Streitbürger. A Stabilized DG Cut Cell Method for Discretizing the Linear Transport Equation. SIAM Journal on Scientific Computing, 42(6):A3677-A3703, 2020. · Zbl 1469.65147
[25] C. Engwer, T. Ranner, and S. Westerheide. An unfitted discontinuous Galerkin scheme for conservation laws on evolving surfaces. Proceedings of the Conference Algoritmy, pages 44-54, 2016.
[26] T. Fries and T. Belytschko. The extended/generalized finite element method: An overview of the method and its applications. International Journal for Numerical Methods in Engineering, 84(3):253-304, 2010. · Zbl 1202.74169
[27] E. H. Georgoulis, Edward J. C. Hall, and J. M. Melenk. On the Suboptimality of the p-Version Interior Penalty Discontinuous Galerkin Method. Journal of Scientific Computing, 42:54-67, 2010. · Zbl 1203.65253
[28] V. Girault, B. Rivière, and M. A. Wheeler. Discontinuous Galerkin method with non-overlapping domain decomposition for the Stokes and Navier-Stokes problems. Math. Com-put., 74:53-84, 2005. · Zbl 1057.35029
[29] A. Hansbo and P. Hansbo. An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Eng, 191:5537-5552, 2002. · Zbl 1035.65125
[30] Paul Houston et al. Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM Journal on Numerical Analysis, 39(6):2133-2163, 2002. · Zbl 1015.65067
[31] L. N. T. Huynh, N. C. Nguyen, J. Peraire, and B. C. Khoo. A high order hybrizidable discontinuous Galerkin method for elliptic interface problems. Int. J. Numer. Meth. Engrg., 93:183-200, 2013. · Zbl 1352.65513
[32] E. N. Karatzas. Boundary and distributed optimal control for a population dynamics PDE model with discontinuous in time Galerkin FEM schemes. Comput. Math. Appl., 165(6):70-87, 2024. · Zbl 07859643
[33] E. N. Karatzas, F. Ballarin, and G. Rozza. Projection-based reduced order models for a cut finite element method in parametrized domains. Computers & Mathematics with Applica-tions, 3(79):833-851, 2020. · Zbl 1443.65348
[34] E. N. Karatzas and G. Rozza. A Reduced Order Model for a Stable Embedded Boundary Parametrized Cahn-Hilliard Phase-Field System Based on Cut Finite Elements. J Sci Com-put, 89(9):1-29, 2021. · Zbl 1500.65063
[35] E. N. Karatzas, G. Stabile, N. Atallah, G. Scovazzi, and G. Rozza. A reduced order approach for the embedded shifted boundary fem and a heat exchange system on parametrized ge-ometries. pages 22-25. IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May, 2018. IUTAM Bookseries, vol 36. Springer, Cham, 2020. · Zbl 1442.65376
[36] E. N. Karatzas, G. Stabile, L. Nouveau, G. Scovazzi, and G. Rozza. A reduced basis approach for PDEs on parametrized geometries based on the shifted boundary finite element method and application to a Stokes flow. Comput. Methods Appl. Mech. Engrg., 347:568-587, 2019. · Zbl 1440.76073
[37] E. N. Karatzas, G. Stabile, L. Nouveau, G. Scovazzi, and G. Rozza. A reduced-order shifted boundary method for parametrized incompressible Navier-Stokes equations. Comput. Meth-ods Appl. Mech. Engrg., 370:113-273, 2020. · Zbl 1506.76086
[38] E. M. Kolahdouz, A. P. S. Bhalla, B. A. Craven, and B. E. Griffith. An immersed interface method for faceted surfaces. Journal of Computational Physics, 400, 2020. · Zbl 1453.76075
[39] C. Lehrenfeld, F. Heimann, J. Preuß , and H. von Wahl. ngsxfem: Add-on to ngsolve for geo-metrically unfitted finite element discretizations. Journal of Open Source Software, 6(64):32-37, 2021.
[40] A. Lozinski. Cutfem without cutting the mesh cells: a new way to impose dirichlet and neumann boundary conditions on unfitted meshes. Computer Methods in Applied Mechanics and Engineering, 356:75-100, 2019. · Zbl 1441.65108
[41] A. Main and G. Scovazzi. The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. Journal of Computational Physics, 372:972-995, 2018. · Zbl 1415.76457
[42] A. Massing, M. G. Larson, A. Logg, and M. E. Rognes. A stabilized Nitsche fictitious domain method for the Stokes problem. J. Sci. Comput., 61:604-628, 2014. · Zbl 1417.76028
[43] A. Massing, M. G. Larson, A. Logg, and M. E. Rognes. A stabilized Nitsche overlapping mesh method for the Stokes problem. Numer. Math., 128:73-101, 2014. · Zbl 1426.76289
[44] R. Massjung. An unfitted discontinuous galerkin method applied to elliptic interface problems. SIAM J. Numer. Anal., 50:3134-3162, 2012. · Zbl 1262.65178
[45] J. M. Melenk. hp-finite element methods for singular perturbations. 2002. · Zbl 1021.65055
[46] V. Murti and S. Valliappan. Numerical inverse isoparametric mapping in remeshing and nodal quantity contouring. Computers & Structures, 22(6):1011-1021, 1986. · Zbl 0578.73067
[47] V. Murti, Y. Wang, and S. Valliappan. Numerical inverse isoparametric mapping in 3D FEM. Computers & Structures, 29(4):611-622, 1988. · Zbl 0638.73037
[48] S. J. Osher and R. Fedkiw. Level set methods and dynamic implicit surfaces., volume 153 of Applied mathematical sciences. Springer, 2003. · Zbl 1026.76001
[49] V. Pasquariello, F. Hammerl, G. Órley, S. Hickel, C. Danowski, A. Popp, W.A. Wall, and N.A. Adams. A cut-cell finite volume-finite element coupling approach for fluid-structure interaction in compressible flow. J. Comput. Phys., 307:670-695, 2016. · Zbl 1351.76077
[50] C. S. Peskin. Flow patterns around heart valves: A numerical method. J. Comput. Phys., 10:252-271, 1972. · Zbl 0244.92002
[51] J. Schberl, A. Arnold, J. Erb, J. M. Melenk, and T. P. Wihler. C++11 implementation of finite elements in NGSolve. Technical report, Institute for Analysis and Scientific Computing, Vienna University of Technology, 2014. ASC Report 30/2014.
[52] D. Schötzau, C. Schwab, and A. Toselli. Mixed hp-DGFEM for incompressible flows. SIAM J. Numer. Anal, 40:2171-2194, 2003. · Zbl 1055.76032
[53] C. Schwab. p-and hp-Finite element methods: Theory and applications in solid and flu-id mechanics. Oxford University Press: Numerical mathematics and scientific computation, 1998. · Zbl 0910.73003
[54] N. Sukumar and A. Tabarraei. Conforming polygonal finite elements. International Journal for Numerical Methods in Engineering, 61(12):2045-2066, 2004. · Zbl 1073.65563
[55] A. Toselli. hp-discontinuous Galerkin approximations for the Stokes problem. Mathematical Models and Methods in Applied Sciences, 12(11):1565-1597, 2002. · Zbl 1041.76045
[56] Q. Wang and J. Chen. Unfitted discontinuous galerkin method for elliptic interface problems. Journal of Applied Mathematics, 13(3):1-10, 2014.
[57] C. H. Wu, O. M. Faltinsen, and B. F. Chen. Time-independent finite difference and ghost cell method to study sloshing liquid in 2d and 3d tanks with internal structures. Comm. Comput. Phys., 13(3):780-800, 2013.
[58] School of Mathematics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece. E-mail: ekaratza@math.auth.gr SISSA, International School for Advanced Studies, Mathematics Area, mathLab, Trieste, Italy. E-mail: ekaratza@sissa.it
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.