×

Spectral element method for three dimensional elliptic problems with smooth interfaces. (English) Zbl 1439.74490

Summary: In this paper we propose a least-squares spectral element method for three dimensional elliptic interface problems. The differentiability estimates and the main stability theorem, using non-conforming spectral element functions, are proven. The proposed method is free from any kind of first order reformulation. A suitable preconditioner is constructed with help of the regularity estimate and proposed stability estimates which is used to control the condition number. We show that these preconditioners are spectrally equivalent to the quadratic forms by which we approximate them. We obtain the error estimates which show the exponential accuracy of the method. Numerical results are obtained for both straight and curved interfaces to show the efficiency of the proposed method.

MSC:

74S25 Spectral and related methods applied to problems in solid mechanics
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
74A50 Structured surfaces and interfaces, coexistent phases
Full Text: DOI

References:

[1] Babuška, I., The finite element method for elliptic equations with discontinuous coefficients, Computing, 5, 207-213 (1970) · Zbl 0199.50603
[2] Barrett, J. W.; Elliott, C. M., Fitted and unfitted finite-element methods for elliptic equations with smooth interfaces, IMA J. Numer. Anal., 7, 3, 283-300 (1987) · Zbl 0629.65118
[3] Berndt, M.; Manteuffel, T. A.; McCormick, S. F.; Starke, G., Analysis of first-order system least squares (FOSLS) for elliptic problems with discontinuous coefficients: Part I, SIAM J. Numer. Anal., 43, 1, 386-408 (2005) · Zbl 1087.65115
[4] Berthelsen, P. A., A decomposed immersed interface method for variable coefficient elliptic equations with non-smooth and discontinuous solutions, J. Comput. Phys., 364-386 (2004) · Zbl 1052.65100
[5] Lamichhane, B. P.; Wohlmuth, B. I., Mortar finite elements for interface problems, Computing, 72, 3-4, 333-348 (2004) · Zbl 1055.65129
[6] Bramble, J. H.; King, J. T., A finite element method for interface problems in domains with smooth boundaries and interfaces, Adv. Comput. Math., 6, 1, 109-138 (1996) · Zbl 0868.65081
[7] Cai, Z.; Cao, S., A recovery-based a posteriori error estimator for \(H(curl)\) interface problems, Comput. Methods Appl. Mech. Engrg., 296, 169-195 (2015) · Zbl 1425.65153
[8] Chandrasekhar, A.; Hautefeuille, M.; Dolbow, J. E., A robust Nitsche’s formulation for interface problems, Comput. Methods Appl. Mech. Engrg., 225, 44-54 (2012) · Zbl 1253.74096
[9] Clausen, A.; Niels, A.; Sigmund, O., Topology optimization of coated structures and material interface problems, Comput. Methods Appl. Mech. Engrg., 290, 524-541 (2015) · Zbl 1423.74742
[10] Codina, R.; Badia, S., On the design of discontinuous Galerkin methods for elliptic problems based on hybrid formulations, Comput. Methods Appl. Mech. Engrg., 263, 158-168 (2013) · Zbl 1286.65157
[11] Deng, S.; Ito, K.; Li, Z., Three-dimensional elliptic solvers for interface problems and applications, J. Comput. Phys., 184, 1, 215-243 (2003) · Zbl 1016.65072
[12] Dumett, M. A.; Keener, J. P., An immersed interface method for solving anisotropic elliptic boundary value problems in three dimensions, SIAM J. Sci. Comput., 25, 348-367 (2003) · Zbl 1071.65137
[13] Fogelson, A. L.; Keener, J. P., Immersed interface methods for Neumann and related problems in two and three dimensions, SIAM J. Sci. Comput., 22, 1630-1654 (2000) · Zbl 0982.65112
[14] Gordon, W. J.; Hall, C. A., Transfinite element methods: blending-function interpolation over arbitrary curved element domains, Numer. Math., 21, 2, 109-129 (1973) · Zbl 0254.65072
[15] Hansbo, A.; Hansbo, P., An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems, Comput. Methods Appl. Mech. Engrg., 191, 47, 5537-5552 (2002) · Zbl 1035.65125
[16] Huang, J.; Zou, J., A mortar element method for elliptic problems with discontinuous coefficients, IMA J. Numer. Anal., 22, 4, 549-576 (2002) · Zbl 1014.65117
[17] Kumar, N. K.; Raju, G. N., Nonconforming least-squares method for elliptic partial differential equations with smooth interfaces, J. Sci. Comput., 53, 2, 295-319 (2012) · Zbl 1272.65093
[18] Xia, K.; Wei, G. W., A Galerkin formulation of the MIB method for three dimensional elliptic interface problems, Comput. Math. Appl., 68, 7, 719-745 (2014) · Zbl 1362.65130
[19] Leveque, J. R.; Li, Z., The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 31, 4, 1019-1044 (1994) · Zbl 0811.65083
[20] Li, J.; Melenk, J. M.; Wohlmuth, B.; Zou, J., Optimal a priori estimates for higher order finite elements for elliptic interface problems, Appl. Numer. Math., 60, 1, 19-37 (2010) · Zbl 1208.65168
[21] Oh, H. S.; BabuÅka, I., The p-version of the finite element method for the elliptic boundary value problems with interfaces, Comput. Methods Appl. Mech. Engrg., 97, 2, 211-231 (1992) · Zbl 0762.65059
[22] Ramiere, Isabelle; Angot, Philippe; Belliard, Michel, A fictitious domain approach with spread interface for elliptic problems with general boundary conditions, Comput. Methods Appl. Mech. Engrg., 196, 4, 766-781 (2007) · Zbl 1121.65364
[23] Taleei, A.; Dehghan, M., Direct meshless local Petrov-Galerkin method for elliptic interface problems with applications in electrostatic and elastostatic, Comput. Methods Appl. Mech. Engrg., 278, 479-498 (2014) · Zbl 1423.82009
[24] Wiegmann, A.; Bube, K. P., The explicit-jump immersed interface method: finite difference methods for PDEs with piecewise smooth solutions, SIAM J. Numer. Anal., 37, 827-862 (2000) · Zbl 0948.65107
[25] Yu, S.; Wei, G. W., Three-dimensional matched interface and boundary (MIB) method for treating geometric singularities, J. Comput. Phys., 227, 1, 602-632 (2007) · Zbl 1128.65103
[26] Fadlun, E. A.; Verzicco, R.; Orlandi, P.; Mohd-Yusof, J., Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations, J. Comput. Phys., 161, 30-60 (2000) · Zbl 0972.76073
[27] Francois, M.; Shyy, W., Computations of drop dynamics with the immersed boundary method, part 2: Drop impact and heat transfer, Numer. Heat Transfer B, 44, 119-143 (2003)
[28] Francois, M.; Uzgoren, E.; Jackson, J.; Shyy, W., Multigrid computations with the immersed boundary technique for multiphase flows, Internat. J. Numer. Methods Heat Fluid Flow, 14, 98-115 (2004) · Zbl 1064.76081
[29] Iaccarino, G.; Verzicco, R., Immersed boundary technique for turbulent flow simulations, Appl. Mech. Rev., 56, 331-347 (2003)
[30] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu. Rev. Fluid Mech., 37, 236-261 (2005) · Zbl 1117.76049
[31] Hadley, G. R., High-accuracy finite-difference equations for dielectric waveguide analysis I: Uniform regions and dielectric interfaces, J. Lightwave Technol., 20, 1210-1218 (2002)
[32] Hesthaven, J. S., High-order accurate methods in time-domain computational electromagnetics, A review, Adv. Imaging Electron. Phys., 127, 59-123 (2003)
[33] Kafafy, R.; Lin, T.; Lin, Y.; Wang, J., Three-dimensional immersed finite element methods for electric field simulation in composite materials, Internat. J. Numer. Methods Engrg., 64, 940-972 (2005) · Zbl 1122.78018
[34] Horikis, T. P.; Kath, W. L., Modal analysis of circular Bragg fibers with arbitrary index profiles, Opt. Lett., 31, 3417-3419 (2006)
[35] Hou, T. Y.; Li, Z. L.; Osher, S.; Zhao, H., A hybrid method for moving interface problems with application to the Hele-Shaw flow, J. Comput. Phys., 134, 236-252 (1997) · Zbl 0888.76067
[36] Geng, W. H.; Yu, S. N.; Wei, G. W., Treatment of charge singularities in the implicit solvent models, J. Chem. Phys., 127, Article 114106 pp. (2007)
[37] Liu, W. K.; Liu, Y.; Farrell, D.; Zhang, L.; Wang, X.; Fukui, Y.; Patankar, N.; Zhang, Y.; Bajaj, C.; Chen, X.; Hsu, H., Immersed finite element method and its applications to biological systems, Comput. Methods Appl. Mech. Engrg., 195, 1722-1749 (2006) · Zbl 1178.76232
[38] Yu, S.; Geng, W. H.; Wei, G. W., Treatment of geometric singularities in the implicit solvent models, J. Chem. Phys., 126, Article 244108 pp. (2007)
[39] Zhou, Y. C.; Feig, M.; Wei, G. W., Highly accurate biomolecular electrostatics in continuum dielectric environments, J. Comput. Chem., 29, 1, 87-97 (2008)
[40] Fedkiw, R. P.; Aslam, T.; Merriman, B.; Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152, 457-492 (1999) · Zbl 0957.76052
[41] Liu, X. D.; Fedkiw, R. P.; Kang, M., A boundary condition capturing method for Poisson’s equation on irregular domains, J. Comput. Phys., 160, 151-178 (2000) · Zbl 0958.65105
[42] Cai, W.; Deng, S. Z., An upwinding embedded boundary method for Maxwell’s equations in media with material interfaces: 2D case, J. Comput. Phys., 190, 159-183 (2003) · Zbl 1031.78005
[43] Oevermann, M.; Klein, R., A Cartesian grid finite volume method for elliptic equations with variable coefficients and embedded interfaces, J. Comput. Phys., 219, 749-769 (2006) · Zbl 1143.35022
[44] Mayo, A., The fast solution of Poisson’s and the biharmonic equations on irregular regions, SIAM J. Numer. Anal., 21, 285-299 (1984) · Zbl 1131.65303
[45] Mayo, A.; Greenbaum, A., Fourth order accurate evaluation of integrals in potential theory on exterior 3D regions, J. Comput. Phys., 220, 900-914 (2007) · Zbl 1109.65028
[46] McKenney, A.; Greengard, L.; Mayo, A., A fast poisson solver for complex geometries, J. Comput. Phys., 118, 348-355 (1995) · Zbl 0823.65115
[47] Gibou, F.; Fedkiw, R. P., A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem, J. Comput. Phys., 202, 577-601 (2005) · Zbl 1061.65079
[48] Tornberg, A. K.; Engquist, B., Numerical approximations of singular source terms in differential equations, J. Comput. Phys., 200, 462-488 (2004) · Zbl 1115.76392
[49] Zhao, S.; Wei, G. W., High order FDTD methods via derivative matching for Maxwell’s equations with material interfaces, J. Comput. Phys., 200, 60-103 (2004) · Zbl 1050.78018
[50] Zhou, Y. C.; Zhao, S.; Feig, M.; Wei, G. W., High order matched interface and boundary (MIB) schemes for elliptic equations with discontinuous coefficients and singular sources, J. Comput. Phys., 213, 1-30 (2006) · Zbl 1089.65117
[51] Zhou, Y. C.; Wei, G. W., On the fictitious-domain and interpolation formulations of the matched interface and boundary (mib) method, J. Comput. Phys., 219, 228-246 (2006) · Zbl 1105.65108
[52] Zhao, S.; Wei, G. W.; Xiang, Y., DSC analysis of free-edged beams by an iteratively matched boundary method, J. Sound Vib., 284, 487-493 (2005) · Zbl 1237.74198
[53] Yu, S.; Wei, G. W., Three-dimensional matched interface and boundary (MIB) method for treating geometric singularities, J. Comput. Phys., 227, 1, 602-632 (2007) · Zbl 1128.65103
[54] Miniowitz, R.; Webb, J. P., Covariant-projection quadrilateral elements for the analysis of wave-guides with sharp edges, IEEE Trans. Microw. Theory Techn., 39, 501-505 (1991)
[55] Caorsi, S.; Pastorino, M.; Raffetto, M., Electromagnetic scattering by a conducting strip with a multilayer elliptic dielectric coating, IEEE Trans. Electromagn. Compat., 41, 335-343 (1999)
[56] Pan, G.; Tong, M.; Gilbert, B., Multiwavelet based moment method under discrete Sobolev-type norm, Microwave Opt. Techn. Lett., 40, 47-50 (2004)
[57] Tanner, Z. P.; Savage, J. Z.; Tanner, D. R.; Peterson, A. F., Two-dimensional singular vector elements for finite-element analysis, IEEE Trans. Microw. Theory Techn., 46, 178-184 (1998)
[58] van Rens, B. J.E.; Brekelmans, W. A.M.; Baaijens, F. P.T., Modelling friction near sharp edges using a Eulerian reference frame: application to aluminum extrusion, Internat. J. Numer. Methods Engrg., 54, 453-471 (2002) · Zbl 1098.74722
[59] Macak, E. B.; Munz, W. D.; Rodenburg, J. M., Plasma-surface interaction at sharp edges and corners during ion-assisted physical vapor deposition. Part I: Edge-related effects and their influence on coating morphology and composition, J. Appl. Phys., 94, 2829-2836 (2003)
[60] Baetke, F.; Werner, H.; Wengle, H., Numerical-simulation of turbulent-flow over surface-mounted obstacles with sharp edges and corners, J. Wind Engng. Indust. Aerodyn., 35, 129-147 (1990)
[61] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods in Fluid Dynamics (1988), Springer · Zbl 0658.76001
[62] Karniadakis, G.; Sherwin, J., Spectral/\(h - p\) Element Methods for CFD (1999), Oxford University Press · Zbl 0954.76001
[63] Shen, J.; Tang, T., Spectral and High-Order Methods with Applications (2006), Science Press · Zbl 1234.65005
[64] Babuška, I.; Guo, B., The \(h-p\) version of the finite element method, Part I: The basic approximation results, Comput. Mech., 1, 21-41 (1986) · Zbl 0634.73058
[65] Mandel, J., Iterative methods for \(p\)-version finite elements: Preconditioning thin solids, Comput. Methods Appl. Mech. Engrg., 133, 247-257 (1996) · Zbl 0891.73065
[66] Pathria, D.; Karniadakis, G. E., Spectral element methods for ellptic problems in non-smooth domains, J. Comput. Phys., 122, 83-95 (1995) · Zbl 0844.65082
[67] Bochev, P. B.; Gunzburger, M. D., (Least-Squares Finite Element Methods. Least-Squares Finite Element Methods, Applied Mathematical Sciences, vol. 166 (2009), Springer) · Zbl 1168.65067
[68] Dutt, P.; Husain, A.; Murthy, A. S.V.; Upadhyay, C. S., \(h-p\) spectral element methods for three dimensional elliptic problems on non-smooth domains using parallel computers, Part-I: Regularity estimates and stability theorem, Proc. Math. Sci., 125, 20, 239-270 (2015) · Zbl 1339.65226
[69] Dutt, P.; Husain, A.; Murthy, A. S.V.; Upadhyay, C. S., \(h-p\) spectral element methods for three dimensional elliptic problems on non-smooth domains, Appl. Math. Comput., 234, 13-35 (2014) · Zbl 1298.65180
[70] Dutt, P.; Husain, A.; Murthy, A. S.V.; Upadhyay, C. S., \(h-p\) spectral element methods for three dimensional elliptic problems on non-smooth domains, Part-III: Error estimates, ptreconditioners, computational techniques and numerical resutls, Comput. Math. Appl., 71, 9, 1745-1771 (2016) · Zbl 1443.65388
[71] Dutt, P. K.; Kishore, N. K.; Upadhyay, C. S., Non-conforming \(h-p\) spectral element methods for elliptic problems, Proc. Indian Acad. Sci. Math. Sci., 117, 1, 109-145 (2007) · Zbl 1120.65125
[72] Dutt, P.; Tomar, S., Stability estimates for \(h-p\) spectral element methods for general elliptic problems on curvilinear domains, Proc. Indian Acad. Sci. Math. Sci., 113, 4, 395-429 (2003) · Zbl 1045.65095
[73] Khan, A.; Upadhyay, C. S., Exponentially accurate nonconforming least-squares spectral element method for elliptic problems on unbounded domain, Comput. Methods Appl. Mech. Engrg. (2016) · Zbl 1425.65164
[74] Kumar, N. K.; Raju, G. N., Least-squares hp/spectral element method for elliptic problems, Appl. Numer. Math., 60, 1, 38-54 (2010) · Zbl 1189.65289
[75] Pontaza, J. P.; Reddy, J. N., Spectral/hp least-squares finite element formulation for the incompressible Navier-Stokes equation, J. Comput. Phys., 190, 2, 523-549 (2004) · Zbl 1077.76054
[76] Proot, M. M.J.; Gerritsma, M. I., A least-squares spectral element formulation for Stokes problem, J. Sci. Comput., 17, 1-4, 285-296 (2002) · Zbl 1036.76046
[77] Dutt, P.; Biswas, P.; Ghorai, S., Spectral element methods for parabolic problems, J. Comput. Appl. Math., 203, 461-486 (2007) · Zbl 1117.65135
[78] Gerritsma, M.; Maerschalck, D. B., Least-squares spectral element methods in computational fluid dynamics advanced computational methods in science and engineering, Lect. Notes Comput. Sci. Eng., 71, 179-227 (2010) · Zbl 1423.76322
[79] Tomar, S. K., \(h-p\) spectral element methods for elliptic problems over non-smooth domains using parallel computers, Computing, 78, 117-143 (2006) · Zbl 1109.65105
[80] Schötzau, D.; Schwab, C.; Wihler, T. P., hp-DGFEM for second-order elliptic problems in polyhedra I: Stability on geometric meshes, SIAM J. Numer. Anal., 51, 3, 1610-1633 (2013) · Zbl 1276.65084
[81] Schötzau, D.; Schwab, C.; Wihler, T. P., hp-dGFEM for second order elliptic problems in polyhedra II: Exponential convergence, SIAM J. Numer. Anal., 51, 4, 2005-2035 (2013) · Zbl 1457.65215
[82] Adams, R. A., Sobolev Spaces (1975), Academic Press: Academic Press New York · Zbl 0314.46030
[83] Lions, J. L.; Magenes, E., Non-Homogeneous Boundary Value Problems and Applications, Vol II (1972), Springer Verlag: Springer Verlag Berlin, Heidelberg, New York · Zbl 0227.35001
[84] Babuška, I.; Guo, B., Regularity of the solutions of elliptic problems with piecewise analytic data. Part I. Boundary value problems for linear elliptic equation of second order, SIAM J. Math. Anal., 19, 1, 172-203 (1988) · Zbl 0647.35021
[85] Toselli, A.; Widlund, O., Domain Decomposition Methods: Algorithms and Theory, vol. 3 (2005), Springer: Springer Berlin · Zbl 1069.65138
[86] Husain, A., \(h-p\) Spectral Element Methods for Three Dimensional Elliptic Problems on Non-smooth Domains Using Parallel Computers (2011), IIT Kanpur: IIT Kanpur India, Reprint available at arXiv:1110.2316
[87] Pavarino, F. L.; Widlund, O. B., A polylogarithmic bound for an iterative substructuring method for spectral elements in three dimensions, SIAM J. Numer. Anal., 33, 4, 1303-1335 (1996) · Zbl 0856.41007
[88] Schwab, C., \(p\)- and \(h p\) Finite Element Methods (1998), Clarendon Press: Clarendon Press Oxford · Zbl 0910.73003
[89] C. Bernardi, M. Dauge, Y. Maday, Polynomials in the Sobolev World, 2003.; C. Bernardi, M. Dauge, Y. Maday, Polynomials in the Sobolev World, 2003.
[90] Dutt, P.; Biswas, P.; Raju, G. N., Preconditioners for spectral element methods for elliptic and parabolic problems, J. Comput. Appl. Math., 215, 1, 152-166 (2008) · Zbl 1136.65092
[91] Babuška, I.; Guo, B., The \(h-p\) version of the finite element method on domains with curved boundaries, SIAM J. Numer. Anal., 25, 837-861 (1988) · Zbl 0655.65124
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.