×

Pairs of Lie-type and large orbits of group actions on filtered modules: a characteristic-free approach to finite determinacy. (English) Zbl 1491.58013

Summary: Finite determinacy for mappings has been classically thoroughly studied in numerous scenarios in the real- and complex-analytic category and in the differentiable case. It means that the map-germ is determined, up to a given equivalence relation, by a finite part of its Taylor expansion. The equivalence relation is usually given by a group action and the first step is always to reduce the determinacy question to an “infinitesimal determinacy”, i.e., to the tangent spaces at the orbits of the group action. In this work we formulate a universal, characteristic-free approach to finite determinacy, not necessarily over a field, and for a large class of group actions. We do not restrict to pro-algebraic or Lie groups, rather we introduce the notion of “pairs of (weak) Lie type”, which are groups together with a substitute for the tangent space to the orbit such that the orbit is locally approximated by its tangent space, in a precise sense. This construction may be considered as a kind of replacement of the exponential resp. logarithmic maps. It is of independent interest as it provides a general method to pass from the tangent space to the orbit of a group action in any characteristic. In this generality we establish the “determinacy versus infinitesimal determinacy” criteria, a far reaching generalization of numerous classical and recent results, together with some new applications.

MSC:

58K40 Classification; finite determinacy of map germs
58K50 Normal forms on manifolds
14B05 Singularities in algebraic geometry
14B07 Deformations of singularities
16W70 Filtered associative rings; filtrational and graded techniques

Software:

classifyCeq.lib

References:

[1] Abhyankar, S.S.: Automorphisms of analytic local rings. Inst. Hautes Études Sci. Publ. Math. No. 36, 136-163 (1969) · Zbl 0193.00401
[2] Abzal, D.; Kanwal, S.; Pfister, G., Tangent space to the orbit of an algebraic group action, Bull. Math. Soc. Sci. Math. Roumanie, Tome, 61 (109), 2, 135-146 (2018) · Zbl 1413.14002
[3] Arnold, V.I., Goryunov, V.V., Lyashko, O.V., Vasilev, V.A.: Singularity Theory. I. Reprint of the Original English Edition from the Series Encyclopedia of Mathematical Sciences [Dynamical systems. VI, Encyclopaedia Math. Sci., 6, Springer, Berlin, 1993;]. Springer, Berlin (1998) · Zbl 0786.00006
[4] Arnol’d, VI, Critical points of smooth functions and their normal forms, Russ. Math. Surv., 30, 5, 1-75 (1975) · Zbl 0343.58001
[5] Artin, M., Algebraic approximation of structures over complete local rings, Publ. Math. IHES, 36, 23-58 (1969) · Zbl 0181.48802 · doi:10.1007/BF02684596
[6] Belickii, G.R.: The \(w\)-determinacy of germs of mappings with respect to a given group. (Russian) Uspehi Mat. Nauk 29, no. 3(177), 181 (1974) · Zbl 0304.58008
[7] Belitski, G., Kerner, D.: Finite determinacy of matrices over local rings. II. Group-actions involving the ring automorphisms. arXiv:1604.06247
[8] Belitski, G.; Kerner, D., Group actions on filtered modules and finite determinacy. Finding large submodules in the orbit by linearization, C. R. Math. Acad. Sci. Soc. R. Can., 38, 4, 113-153 (2016) · Zbl 1359.58020
[9] Belitskii, G.; Kerner, D., A strong version of implicit function theorem, Eur. J. Math., 2, 2, 418-443 (2016) · Zbl 1348.47049
[10] Belitski, G.; Kerner, D., Finite determinacy of matrices over local rings. Tangent modules to the miniversal deformations for \(R\)-linear group actions, J. Pure Appl. Algebra, 223, 3, 1288-1321 (2019) · Zbl 1406.58022
[11] Belitskii, G., Boix, A.F., Kerner, D.: When does a derivation of a ring exponentiate to an automorphism? (in preparation)
[12] Belitskii, G.; Boix, A. F.; Kerner, D., Approximation results of Artin-Tougeron-type for general filtrations and for \(C^r\)-equations, J. Pure Appl. Algebra, 224, 12, 106431 (2020) · Zbl 1460.13016
[13] Bourbaki, N., General Topology. Chapters 1-4, Translated from the French Reprint of the 1989 English translation. Elements of Mathematics (Berlin) (1998), Berlin: Springer, Berlin · Zbl 0894.54001
[14] Boubakri, Y.: Hypersurface singularities in positive characteristic, Ph.D. thesis, TU Kaiserslautern (2009). http://www.mathematik.uni-kl.de/ wwwagag/download/reports/Boubakri/thesis-boubakri.pdf · Zbl 1279.14004
[15] Boubakri, Y.; Greuel, G-M; Markwig, Th, Normal forms of hypersurface singularities in positive characteristic, Mosc. Math. J., 11, 4, 657-683 (2011) · Zbl 1272.32025
[16] Boubakri, Y.; Greuel, G-M; Markwig, Th, Invariants of hypersurface singularities in positive characteristic, Rev. Mat. Complut., 25, 1, 61-85 (2012) · Zbl 1279.14004
[17] Bruce, JW; du Plessis, AA; Wall, CTC, Determinacy and unipotency, Invent. Math., 88, 3, 521-554 (1987) · Zbl 0596.58005
[18] Bruce, JW; Roberts, RM, Critical points of functions on analytic varieties, Topology, 27, 1, 57-90 (1988) · Zbl 0639.32008
[19] Brumatti, P.; Simis, A., The module of derivations of a Stanley-Reisner ring, Proc. Am. Math. Soc., 123, 5, 1309-1318 (1995) · Zbl 0826.13006
[20] Bruns, W.; Vetter, U., Determinantal Rings. Lecture Notes in Mathematics (1988), Berlin: Springer, Berlin · Zbl 1079.14533
[21] Cohen, IS, On the structure and ideal theory of complete local rings, Trans. Am. Math. Soc., 59, 54-106 (1946) · Zbl 0060.07001
[22] Damon, J., The unfolding and determinacy theorems for subgroups of \(\cal{A}\) and \(\mathscr{K} \), Mem. Am. Math. Soc., 50, 306, x+88 (1984) · Zbl 0545.58010
[23] Denef, J.; Lipshitz, L., Ultraproducts and approximation in local rings, II. Math. Ann., 253, 1, 1-28 (1980) · Zbl 0426.13010
[24] Dimca, A., Function germs defined on isolated hypersurface singularities, Compos. Math., 53, 2, 245-258 (1984) · Zbl 0548.32005
[25] Dimca, A., Are the isolated singularities of complete intersections determined by their singular subspaces?, Math. Ann., 267, 4, 461-472 (1984) · Zbl 0519.32009
[26] Dimca, A., Topics on Real and Complex Singularities. An introduction. Advanced Lectures in Mathematics (1987), Braunschweig: Friedr Vieweg & Sohn, Braunschweig · Zbl 0628.14001
[27] Eisenbud, D., Commutative Algebra. With a View Toward Algebraic Geometry. Graduate Texts in Mathematics (1995), New York: Springer, New York · Zbl 0819.13001
[28] Grandjean, V., Finite determinacy relative to closed and finitely generated ideals, Manuscripta Math., 103, 3, 313-328 (2000) · Zbl 0971.58023
[29] Greuel, G-M; Kröning, H., Simple singularities in positive characteristic, Math. Z., 203, 339-354 (1990) · Zbl 0715.14001
[30] Greuel, G-M; Pham, TH, Mather-Yau theorem in positive characteristic, J. Algebr. Geom., 26, 2, 347-355 (2017) · Zbl 1357.14010
[31] Greuel, G-M; Pham, TH, On finite determinacy for matrices of power series, Math. Z., 290, 3-4, 759-774 (2018) · Zbl 1439.14020
[32] Greuel, G-M; Pham, TH, Finite determinacy of matrices and ideals in arbitrary characteristics, J. Algebra, 530, 195-214 (2019) · Zbl 1505.13028
[33] Greuel, G-M; Pham, TH, Algorithms for group actions in arbitrary characteristic and a problem in singularity theory, Appl. Algebra Eng. Commun. Comput., 31, 2, 87-100 (2020) · Zbl 1440.14218
[34] Greuel, G-M; Lossen, C.; Shustin, E., Introduction to Singularities and Deformations. Springer Monographs in Mathematics (2007), Berlin: Springer, Berlin · Zbl 1125.32013
[35] Hengxing, L.; Jingwen, L., The finite \(\mathscr{S} \)-determinacy of singularities in positive characteristic, \( \mathscr{S}=\mathscr{R}_G,\mathscr{R}_A,\mathscr{K}_G,\mathscr{K}_A\), Bull. Iran. Math. Soc., 40, 6, 1347-1372 (2014) · Zbl 1337.32043
[36] Izumiya, Sh; Matsuoka, S., Notes on smooth function germs on varieties, Proc. Am. Math. Soc., 97, 1, 146-150 (1986) · Zbl 0594.58013
[37] Janeczko, S., On algebraic criteria for \(k\)-determinacy of germs of smooth functions on manifolds with boundary, Demonstr. Math., 15, 4, 1113-1123 (1982) · Zbl 0522.58010
[38] Källström, R.; Tadesse, Y., Hilbert series of modules over Lie algebroids, J. Algebra, 432, 129-184 (2015) · Zbl 1325.17013
[39] Kerner, D.: Group actions on matrices over local rings. Annihilators of \(T^1\)-modules for the groups \(\cal{G}_{lr}, \cal{G}_{congr} \). arXiv:1904.10790 · Zbl 1406.58022
[40] Kucharz, W., Power series and smooth functions equivalent to a polynomial, Proc. Am. Math. Soc., 98, 3, 527-533 (1986) · Zbl 0626.58005
[41] Kurke, H.; Pfister, G.; Popescu, D.; Roczen, M.; Mostowski, T., Die Approximationseigenschaft lokaler Ringe. Lecture Notes in Mathematics (1978), Berlin: Springer, Berlin · Zbl 0401.13013
[42] Lu, Ch, Local rings with noetherian filtrations, Pac. J. Math., 36, 209-218 (1971) · Zbl 0215.37003
[43] Mather, J.N.: Stability of \(C^\infty\) mappings. III. Finitely determined map-germs. Publ. Inst. Hautes Études Sci. Publ. Math. No. 35, 279-308 (1968) · Zbl 0159.25001
[44] Mather, J. N., Stability of \(C^\infty\) mappings. I. The division theorem, Ann. Math. (2), 87, 89-104 (1968) · Zbl 0159.24902
[45] Mather, J.N.: Stability of \(C^\infty\) mappings. IV. Classification of stable germs by R-algebras. Publ. Inst. Hautes Études Sci. Publ. Math. No. 37, 223-248 (1969) · Zbl 0202.55102
[46] Mather, J. N., Stability of \(C^\infty\) mappings. II. Infinitesimal stability implies stability, Ann. Math. (2), 89, 254-291 (1969) · Zbl 0177.26002
[47] Mather, J. N., Stability of \(C^\infty\) mappings. V. Transversality, Adv. Math., 4, 301-336 (1970) · Zbl 0207.54303
[48] Mather, J.N.: Stability of \(C^\infty\) mappings. VI: The nice dimensions. Proceedings of Liverpool Singularities-Symposium, I (1969/70). Lecture Notes in Math., vol. 192. Springer, Berlin, pp. 207-253 (1971) · Zbl 0211.56105
[49] Matsumura, H., Commutative Ring Theory.Cambridge Studies in Advanced Mathematics (1989), Cambridge: Cambridge University Press, Cambridge · Zbl 0666.13002
[50] Möhring, K.; van Straten, D., A criterion for the equivalence of formal singularities, Am. J. Math., 124, 6, 1319-1327 (2002) · Zbl 1091.14500
[51] Narváez Macarro, L., On the modules of m-integrable derivations in non-zero characteristic, Adv. Math., 229, 5, 2712-2740 (2012) · Zbl 1242.14015
[52] Nguyen, HD, The right classification of univariate power series in positive characteristic, J. Singul., 10, 235-249 (2014) · Zbl 1315.12005
[53] Oréfice, B., Tomazella, J.N.: Sections of Analytic Variety. Real and Complex Singularities, Contemp. Math., vol. 569. Amer. Math. Soc., Providence, pp. 161-175 (2012) · Zbl 1281.32022
[54] Pellikaan, R., Finite determinacy of functions with nonisolated singularities, Proc. Lond.Math. Soc. (3), 57, 2, 357-382 (1988) · Zbl 0621.32019
[55] Pfister, G.; Popescu, D., Die strenge Approximationseigenschaft lokaler Ringe, Invent. Math., 30, 2, 145-174 (1975) · Zbl 0293.13011
[56] Pham, T.H.: On finite determinacy of hypersurface singularities and matrices in arbitrary characteristic. PhD thesis, Technische Universität Kaiserslautern (2016)
[57] Popescu, D.: Commutative Rings and Algebras. Artin Approximation, in Handbook of Algebra 2, 321-356 (2000) · Zbl 1005.13003
[58] Raynaud, M., Anneaux locaux henséliens Lecture Notes in Mathematics (1970), Berlin: Springer, Berlin · Zbl 0203.05102
[59] Rond, G., Artin approximation, J. Singul., 17, 108-192 (2018) · Zbl 1396.13001
[60] Schemmel, K-P, Eine notwendige und hinreichende Bedingung für die Approximationseigenschaft analytischer Potenzreihenringe über einem Körper beliebiger Charakteristik, Rev. Roumaine Math. Pures Appl., 27, 8, 875-884 (1982) · Zbl 0503.13014
[61] Siersma, D.: Isolated line singularities. Singularities, Part 2 (Arcata, Calif., 1981). In: Proc. Sympos. Pure Math., vol. 40. Amer. Math. Soc., Providence, pp. 485-496 (1983) · Zbl 0514.32007
[62] Tougeron, J.C.: Idéaux de fonctions différentiables. I. Ann. Inst. Fourier (Grenoble), 18, fasc. 1, 177-240 (1968) · Zbl 0188.45102
[63] Tougeron, J.C.: Solutions d’un système d’équations analytiques réelles et applications. Ann. Inst. Fourier (Grenoble) 26, no. 3, x, pp. 109-135 (1976) · Zbl 0338.13025
[64] van den Dries, L., On the elementary theory of restricted elementary functions, J. Symbol. Logic, 53, 3, 796-808 (1988) · Zbl 0698.03023
[65] Wall, CTC, Finite determinacy of smooth map-germs, Bull. Lond. Math. Soc., 13, 6, 481-539 (1981) · Zbl 0451.58009
[66] Wall, CTC, Newton polytopes and non-degeneracy, J. Reine Angew. Math., 509, 1-19 (1999) · Zbl 0917.14001
[67] Whitney, H.: Local properties of analytic varieties. Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse). Princeton Univ. Press, Princeton, pp. 205-244 (1965) · Zbl 0129.39402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.