×

Mean field limit for bosons and propagation of Wigner measures. (English) Zbl 1214.81089

Summary: We consider the \(N\)-body Schrödinger dynamics of bosons in the mean field limit with a bounded pair-interaction potential. According to the previous work [Ann. Henri Poincaré 9, No. 8, 1503–1574 (2008; Zbl 1171.81014)], the mean field limit is translated into a semiclassical problem with a small parameter \(\varepsilon\to 0\), after introducing an \(\epsilon\)-dependent bosonic quantization. The limit is expressed as a push-forward by a nonlinear flow (e.g. Hartree) of the associated Wigner measures. These object and their basic properties were introduced in (loc. cit.) in the infinite dimensional setting. The additional result presented here states that the transport by the nonlinear flow holds for rather general class of quantum states in their mean field limit.
Editorial remark: No review copy delivered

MSC:

81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
81S30 Phase-space methods including Wigner distributions, etc. applied to problems in quantum mechanics
81V70 Many-body theory; quantum Hall effect

Citations:

Zbl 1171.81014

References:

[1] DOI: 10.1007/s00023-008-0393-5 · Zbl 1171.81014 · doi:10.1007/s00023-008-0393-5
[2] Bardos C., Methods Appl. Anal. 7 pp 275– (2000) · Zbl 1003.81027 · doi:10.4310/MAA.2000.v7.n2.a2
[3] DOI: 10.1016/S1631-073X(02)02253-7 · Zbl 1018.81009 · doi:10.1016/S1631-073X(02)02253-7
[4] DOI: 10.1007/s002200050591 · Zbl 0939.58031 · doi:10.1007/s002200050591
[5] DOI: 10.1002/cpa.20134 · Zbl 1113.81032 · doi:10.1002/cpa.20134
[6] DOI: 10.4310/ATMP.2001.v5.n6.a6 · Zbl 1014.81063 · doi:10.4310/ATMP.2001.v5.n6.a6
[7] DOI: 10.1007/s00222-006-0022-1 · Zbl 1123.35066 · doi:10.1007/s00222-006-0022-1
[8] DOI: 10.1007/s00220-007-0207-5 · Zbl 1172.82011 · doi:10.1007/s00220-007-0207-5
[9] DOI: 10.1088/1751-8113/40/12/S09 · Zbl 1115.81071 · doi:10.1088/1751-8113/40/12/S09
[10] DOI: 10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C · Zbl 0881.35099 · doi:10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C
[11] DOI: 10.1007/BF01197745 · Zbl 0443.35067 · doi:10.1007/BF01197745
[12] DOI: 10.1007/BF01215225 · Zbl 0624.58039 · doi:10.1007/BF01215225
[13] DOI: 10.1007/BF01646348 · doi:10.1007/BF01646348
[14] DOI: 10.4171/RMI/143 · Zbl 0801.35117 · doi:10.4171/RMI/143
[15] Martinez A., An Introduction to Semiclassical Analysis and Microlocal Analysis (Universitext) (2002) · Zbl 0994.35003
[16] Robert D., Autour de l’Approximation Semi-Classique. Progress in Mathematics, 68 (1987) · Zbl 0621.35001
[17] DOI: 10.1103/RevModPhys.52.569 · doi:10.1103/RevModPhys.52.569
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.