×

Semiclassical asymptotics, gauge fields, and quantum chaos. (English) Zbl 0679.58046

The paper continues the authors’ study [Commun. Math. Phys. 92, 555-594 (1984; Zbl 0534.58028)] of the spectral behavior in the limit \(\hslash \to 0\) for nonrelativistic Schrödinger operators. Starting from a nonrelativistic gauge field given as connection in a principal G-bundle over a Riemannian manifold M, the paper investigates the semiclassical behavior of Schrödinger operators associated with particles in the gauge field. These particles are (as classical particles) canonically described by their extended configuration space \(\pi^*(P\times ad {\mathfrak g})\) (\({\mathfrak g}\) is the Lie algebra of G), which is a Poisson manifold.
After finding a suitable form for the Hamiltonian operator as a function of \(\hslash\), Fourier integral operator techniques are used intensively to study the asymptotic behavior. The symbols are naturally defined on the extended configuration space (in the paper called WGS bundle) of associated classical particles. The results are used to study smoothed out Chern forms and to describe how ergodicity and chaotic behavior of the flow of these particles is reflected by the spectral behavior of the Hamiltonian operators.
Reviewer: Ch.Günther

MSC:

58J40 Pseudodifferential and Fourier integral operators on manifolds
81T08 Constructive quantum field theory
47Gxx Integral, integro-differential, and pseudodifferential operators

Citations:

Zbl 0534.58028
Full Text: DOI

References:

[1] Alberverio, S.; Blanchard, P.; Hoegh-Krohn, R., Feynman path integrals and the trace formula for the Schrödinger equation, Commun. Math. Phys., 83, 49-76 (1982) · Zbl 0493.35039
[3] Balazs, N.; Voros, A., Chaos on the pseudosphere, Phys. Rep., 143, 3, 109-240 (1986)
[4] Berline, N.; Vergne, M., A computation of the equivariant index of the Dirac operator, Bull. Soc. Math. France, 113, 305-345 (1985) · Zbl 0592.58044
[5] Berry, M., Quantal phase factors accompanying adiabatic changes, (Proc. R. Soc. London A, 392 (1984)), 45-57 · Zbl 1113.81306
[6] Berry, M., Semiclassical mechanics of regular and irregular motion, (Iooss, G.; Helleman, R.; Stora, R., Chaotic Behaviour of Deterministic Systems (1983), North-Holland: North-Holland Amsterdam), 173-271
[7] Berry, M., Classical adibatic angles and quantal adiabatic phase, J. Phys. A, 18, 15-27 (1985) · Zbl 0569.70020
[8] Cheeger, J.; Gromov, M.; Taylor, M., Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom., 17, 15-53 (1982) · Zbl 0493.53035
[9] de Verdiere, Y. Colin, Spectre conjoint d’operateurs pseudodifferentiels qui commutent. II. Le cas integrable, Math. Zeit., 171, 51-73 (1980) · Zbl 0478.35073
[10] de Verdiere, Y. Colin, Ergodicite et fonctions propres du laplacien, Commun. Math. Phys., 102, 497-502 (1985) · Zbl 0592.58050
[11] Guillemin, V.; Sternberg, S., On the equations of motion of a classical particle in a Yang-Mills field and the principle of general covariance, Hadronic J., 1, 1-32 (1978) · Zbl 0449.53051
[12] Guillemin, V.; Uribe, A., The trace formula for vector bundles, Bull. Amer. Math. Soc., 15, 222-224 (1986) · Zbl 0626.58018
[13] Hannay, J., Angle variable holonomy in adiabatic expansion of an integrable Hamiltonian, J. Phys. A Math. Gen., 18, 221-230 (1985)
[14] Helffer, B.; Martinez, A.; Robert, D., Ergodicité et limite semiclassique, Commun. Math. Phys., 109, 313-326 (1986) · Zbl 0624.58039
[15] Helffer, B.; Robert, D., Comportement semi-classique du spectre des hamiltoniens quantiques elliptiques, Ann. Inst. Fourier Grenoble, 31, 169-223 (1981) · Zbl 0451.35022
[16] Hörmander, L., The spectral function of an elliptic operator, Acta Math., 121, 193-218 (1968) · Zbl 0164.13201
[17] Hörmander, L., (The Analysis of Linear Partial Differential Operators, Vols. III and IV (1985), Springer-Verlag: Springer-Verlag New York) · Zbl 0601.35001
[18] Knauf, A., Ergodic and topological properties of Coulombic potentials, Commun. Math. Phys., 110, 89-112 (1987) · Zbl 0616.58044
[19] Maslov, V.; Fedoryuk, N., Semi-Classical Approximation in Quantum Mechanics (1981), Reidel: Reidel Dordrecht · Zbl 0458.58001
[20] Mather, J., Differentiable invariants, Topology, 16, 145-155 (1977) · Zbl 0376.58002
[21] Milnor, J.; Stasheff, J., Characteristic Classes (1974), Princeton Univ. Press · Zbl 0298.57008
[22] Robert, D., Author de l’approximation semi-classique, Cours de l’universite de Nantes et de Recife (1983)
[23] Schnirelman, A., Ergodic properties of eigenfunctions, Uspekhi Math. Nauk., 29, 181-182 (1974) · Zbl 0324.58020
[24] Schrader, R.; Taylor, M., Small \(h̵\) asymptotics for quantum partition functions associated to particles in external Yang-Mills potentials, Commun. Math. Phys., 92, 555-594 (1984) · Zbl 0534.58028
[25] Simon, B., The classical limit of quantum partition functions, Commun. Math. Phys., 71, 247-276 (1980) · Zbl 0436.22012
[26] Simon, B., Holonomy, the quantum adiabatic theorem, and Berry’s phase, Phys. Rev. Lett., 51, 2167-2170 (1983)
[27] Sternberg, S., Minimal coupling and the symplectic structure of a classical particle in the presence of a Yang-Mills field, (Proc. Nat. Acad. Sci. U.S.A., 74 (1977)), 5253-5254 · Zbl 0765.58010
[28] Strichartz, R., Invariant pseudo-differential operators on a Lie group, Ann. Scuola Norm. Sup. Pisa, 26, 587-611 (1972) · Zbl 0244.35071
[29] Strichartz, R., A functional calculus for elliptic pseudodifferential operators, Amer. J. Math., 94, 711-722 (1972) · Zbl 0246.35082
[30] Taylor, M., Pseudodifferential Operators (1981), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ · Zbl 0453.47026
[31] Taylor, M., Noncommutative harmonic analysis, (“Math. Surveys and Monographs,” No. 22 (1986), Amer. Math. Soc: Amer. Math. Soc Providence, RI) · Zbl 0604.43001
[32] Taylor, M., Noncommutative microlocal analysis, Memoirs American Math. Society, No. 313 (1984) · Zbl 0554.35025
[33] Taylor, M., Fourier integral operators and harmonic analysis on compact manifolds, (Proc. Sympos. Pure Math., 35 (1979)), 115-136, (2) · Zbl 0429.35055
[34] Wong, S., Field and particle equation for the classical Yang-Mills field and particles with isotopic spin, Nuovo Cimento, 65A, 689-694 (1970)
[35] Zelditch, S., Eigenfunctions on compact Riemann surfaces of genus \(g\) ⩾ 2 (1984), preprint
[36] Zelobenko, D., Compact Lie groups and their representations, (Translations of Mathematical Monographs (1973), Amer. Math. Soc: Amer. Math. Soc Providence, RI) · Zbl 0272.22006
[37] Davies, E. B.; Simon, B.; Taylor, M., \(L^p\) spectral theory of Kleinian groups, J. Funct. Anal., 78, 116-136 (1988) · Zbl 0644.58022
[38] Duistermaat, J. J.; Guillemin, V., The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., 29, 39-79 (1975) · Zbl 0307.35071
[39] Guillemin, V.; Uribe, A., Clustering theorems with twisted spectra, Math. Ann., 273, 479-506 (1986) · Zbl 0591.58031
[40] Helffer, B., Theorie spectrale pour des operateurs globallement elliptiques, “Asterisque,” No. 112 (1984) · Zbl 0541.35002
[41] Helffer, B.; Robert, D., Calcul fonctionnel par la transformation de Mellin et operateurs admissibles, J. Funct. Anal., 53, 246-268 (1983) · Zbl 0524.35103
[42] Hograve, H.; Potthoff, J.; Schrader, R., Classical limits for quantum particles in external Yang-Mills potentials, Commun. Math. Phys., 91, 573-598 (1983) · Zbl 0547.58044
[43] Montgomery, R., Canonical formulation of a classical particle in a Yang-Mills field and Wong’s equations, Lett. Math. Phys., 8, 59-67 (1984) · Zbl 0562.53062
[44] Petkov, V.; Robert, D., Asymptotique semi-classique du spectre d’hamiltonians quantiques et trajectoires classiques periodiques, Comm. Partial Differential Equations, 10, 365-390 (1985) · Zbl 0574.35067
[45] Robert, D., Calcul fonctionnel sur les operateurs admissibles et applications, J. Funct. Anal., 45, 74-94 (1982) · Zbl 0482.35069
[46] Shubin, M., Pseudodifferential Operators and Spectral Theory (1987), Springer-Verlag: Springer-Verlag Berlin · Zbl 0616.47040
[47] Weinstein, A., A universal phase space for particles in Yang-Mills fields, Lett. Math. Phys., 2, 417-420 (1978) · Zbl 0388.58010
[48] Zelditch, S., Uniform distribution of eigenfunctions on a compact hyperbolic surface, Duke Math. J., 55, 919-941 (1987) · Zbl 0643.58029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.