×

Mean field limit for bosons with compact kernels interactions by Wigner measures transportation. (English) Zbl 1302.82075

Summary: We consider a class of many-body Hamiltonians composed of a free (kinetic) part and a multi-particle (potential) interaction with a compactness assumption on the latter part. We investigate the mean field limit of such quantum systems following the Wigner measures approach. We prove in particular the propagation of these measures along the flow of a nonlinear Hartree field equation. This enhances and complements some previous results of the same type shown by Z. Ammari and F. Nier [ibid. 50, No. 4, 042107, 16 p. (2009; Zbl 1214.81089); J. Math. Pures Appl. (9) 95, No. 6, 585-626 (2011; Zbl 1251.81062)], and J. Fröhlich et al. [Commun. Math. Phys. 271, No. 3, 681-697 (2007; Zbl 1172.82011)].{
©2014 American Institute of Physics}

MSC:

82C22 Interacting particle systems in time-dependent statistical mechanics
82B30 Statistical thermodynamics
81V70 Many-body theory; quantum Hall effect
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81S30 Phase-space methods including Wigner distributions, etc. applied to problems in quantum mechanics
35Q40 PDEs in connection with quantum mechanics

References:

[1] Ambrosio, L.; Gigli, N.; Savaré, G., Gradient Flows in Metric Spaces and in the Space of Probability Measures (2008) · Zbl 1145.35001
[2] Ammari, Z.; Breteaux, S., Propagation of chaos for many-boson systems in one dimension with a point pair-interaction, Asymptotic Analysis, 76, 3-4, 123-170 (2012) · Zbl 1253.81067 · doi:10.3233/ASY-2011-1064
[3] Ammari, Z.; Nier, F., Mean field limit for bosons and infinite dimensional phase-space analysis, Annales Henri Poincare, 9, 8, 1503-1574 (2008) · Zbl 1171.81014 · doi:10.1007/s00023-008-0393-5
[4] Ammari, Z.; Nier, F., Mean field limit for bosons and propagation of Wigner measures, J. Math. Phys., 50, 4, 042107 (2009) · Zbl 1214.81089 · doi:10.1063/1.3115046
[5] Ammari, Z.; Nier, F., Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states, J. Math. Pures Appl., 95, 6, 585-626 (2011) · Zbl 1251.81062 · doi:10.1016/j.matpur.2010.12.004
[6] Ammari, Z. and Nier, F., “Mean field propagation of infinite dimensional Wigner measures with a singular two-body interaction potential,” Ann. Sc. Norm. Super. Pisa Cl. Sci. (to appear). · Zbl 1214.81089
[7] Bardos, C.; Golse, F.; Mauser, N. J., Weak coupling limit of the N-particle Schrödinger equation, Methods Appl. Anal., 7, 2, 275-293 (2000) · Zbl 1003.81027
[8] Chen, T.; Pavlović, N., The quintic NLS as the mean field limit of a boson gas with three-body interactions, J. Funct. Anal., 260, 4, 959-997 (2011) · Zbl 1213.35368 · doi:10.1016/j.jfa.2010.11.003
[9] Erdős, L.; Schlein, B.; Yau, H.-T., Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate, Ann. Math., 172, 1, 291-370 (2010) · Zbl 1204.82028 · doi:10.4007/annals.2010.172.291
[10] Erdős, L.; Yau, H.-T., Derivation of the nonlinear Schrödinger equation from a many body Coulomb system, Adv. Theor. Math. Phys., 5, 6, 1169-1205 (2001) · Zbl 1014.81063
[11] Fröhlich, J.; Graffi, S.; Schwarz, S., Mean-field- and classical limit of many-body Schrödinger dynamics for bosons, Commun. Math. Phys., 271, 3, 681-697 (2007) · Zbl 1172.82011 · doi:10.1007/s00220-007-0207-5
[12] Gérard, P.; Markowich, P. A.; Mauser, N. J.; Poupaud, F., Homogenization limits and Wigner transforms, Commun. Pure Appl. Math., 53, 2, 280-281 (2000) · doi:10.1002/(SICI)1097-0312(200002)53:2<280::AID-CPA4>3.0.CO;2-6
[13] Ginibre, J.; Velo, G., The classical field limit of scattering theory for nonrelativistic many-boson systems. II, Commun. Math. Phys., 68, 1, 45-68 (1979) · Zbl 0443.35068 · doi:10.1007/BF01562541
[14] Helffer, B.; Martinez, A.; Robert, D., Ergodicité et limite semi-classique, Commun. Math. Phys., 109, 2, 313-326 (1987) · Zbl 0624.58039 · doi:10.1007/BF01215225
[15] Hepp, K., The classical limit for quantum mechanical correlation functions, Commun. Math. Phys., 35, 265-277 (1974) · doi:10.1007/BF01646348
[16] Klainerman, S.; Machedon, M., On the uniqueness of solutions to the Gross-Pitaevskii hierarchy, Commun. Math. Phys., 279, 1, 169-185 (2008) · Zbl 1147.37034 · doi:10.1007/s00220-008-0426-4
[17] Knowles, A.; Pickl, P., Mean-field dynamics: singular potentials and rate of convergence, Commun. Math. Phys., 298, 1, 101-138 (2010) · Zbl 1213.81180 · doi:10.1007/s00220-010-1010-2
[18] Lions, P.-L.; Paul, T., Sur les mesures de Wigner, Rev. Mat. Iberoam., 9, 3, 553-618 (1993) · Zbl 0801.35117 · doi:10.4171/RMI/143
[19] Rodnianski, I.; Schlein, B., Quantum fluctuations and rate of convergence towards mean field dynamics, Commun. Math. Phys., 291, 1, 31-61 (2009) · Zbl 1186.82051 · doi:10.1007/s00220-009-0867-4
[20] Spohn, H., Kinetic equations from Hamiltonian dynamics, Rev. Mod. Phys., 52, 3, 569-615 (1980) · doi:10.1103/RevModPhys.52.569
[21] Tartar, L., H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations, Proc. R. Soc. Edinburgh, Sect. A, 115, 3-4, 193-230 (1990) · Zbl 0774.35008 · doi:10.1017/S0308210500020606
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.