×

Entropic bounds on semiclassical measures for quantized one-dimensional maps. (English) Zbl 1223.58028

Quantum ergodicity (QE) is the study of behavior of eigenstates of a quantized Hamiltonian system in the so-called semiclassical limit, corresponding to large energies, or equivalently to the quantization parameter \(\hbar\rightarrow0\). If \(f\) is a classical observable, \(\text{Op}_{\hbar_{k}}(f)\) denotes the quantization of \(f\) with respect to \(\hbar=\hbar_{k}\) (\(k\geq1\)) and \(\psi_{k}\) are the eigenstates of the corresponding quantized Hamiltonian, then there is an associated measure \(\mu_{k}(f)=(\psi_{k},\text{Op}_{\hbar_{k}}(f)\psi)\). In QE, we are then interested in the possible measures \(\mu\) which can appear as limits \(\mu=\lim_{k\rightarrow\infty}\mu_{k}\). The quantum ergodicity theorem says that, for almost all sequences \(\mu_{k}\) the limit measure \(\mu\) is the Liouville measure. If this is true for all sequences, one speaks instead of quantum unique ergodicity (QUE), something which has only been proven in very special cases, and does in fact not hold in general. One example where QUE does not hold are quantized hyperbolic maps for the \(2\)-torus.
In the paper under review, the author wants to study certain ergodic properties of arbitrary limit measures \(\mu\). In particular, he proves a bound on the metric (Kolmogorov-Sinai) entropy \(H_{KS}(\mu)\) for a class of one-dimensional maps.
For the Laplacian on a compact Riemann surface \(X\) with Anosov geodesic flow on the unit cotangent bundle \(S^*X\) it was shown by N. Anantharaman and S. Nonnenmacher (cf., e.g., [Ann. Math. (2) 168, No. 2, 435–475 (2008; Zbl 1175.35036); Ann. Inst. Fourier 57, No. 7, 2465–2523 (2007; Zbl 1145.81033)]) that
\[ H_{KS}(\mu)\geq\int_{S^*X}|\log J^{u}(x)|\,d\mu-\tfrac{1}{2}\lambda_{\max}, \]
where \(J^{u}\) denotes the unstable Jacobian and \(\lambda_{\max}\) the maximum expansion rate of the flow. In some cases, the right hand-side might even be negative, and it therefore makes sense to try and prove a stronger inequality. It was conjectured by N. Anantharaman and S. Nonnenmacher [Ann. Henri Poincaré 8, No. 1, 37–74 (2007; Zbl 1109.81035); 2008, loc. cit.] that (under some conditions) a bound of the form
\[ H_{KS}(\mu)\geq\tfrac{1}{2}\int_{S^*X}|\log J^u(x)|\,d\mu \]
should hold.
The main result of the present paper is to prove that the analogue of this bound holds for a class of piecewise linear interval maps \(T_{p}:I\rightarrow I\), where \(I=\left[0,1\right]\) and the expansion rates are all of the form \(\Lambda_{j}=p^{n_{j}}\) for some fixed integer \(p>1\) and integers \(n_{j}\geq1\) (not necessarily equal). Examples are also given which show that the obtained bound is sharp (in certain cases).
The technique of the proof is to construct a uniformly expanding “tower” \(\tilde{T}:\tilde{I}\rightarrow\tilde{I}\) corresponding to \(T:I\rightarrow I\). The tower construction commutes with the quantization (at least of the “tensorial” type considered) and there is a simple relationship between the invariant measures as well as the metric entropies. By proving the bound for the tower (which is simpler since it is uniformly expanding) the corresponding result for the original system follows immediately.
As an illustration of the method, the author makes all arguments in the proof explicit for the very simplest non-uniform case, namely \(T_{\{2,4,4\}}:I\rightarrow I\) with partition \(I_{1}= [0,\frac{1}{2}],\) \(I_{2}=[\frac{1}{2},\frac{3}{4}]\), \(I_{3}=[\frac{3}{4},1]\) and expansion rates \(\Lambda_{1}=2\), \(\Lambda_{2}=\Lambda_{3}=4\). Following this example throughout makes the proof easier to understand.
The author also states that the desired bound can in fact be proven for all one-dimensional maps whose slopes are given by integer powers of integers (and general quantization).

MSC:

58J51 Relations between spectral theory and ergodic theory, e.g., quantum unique ergodicity
37A30 Ergodic theorems, spectral theory, Markov operators
37D20 Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.)
37E05 Dynamical systems involving maps of the interval
37N20 Dynamical systems in other branches of physics (quantum mechanics, general relativity, laser physics)
81Q50 Quantum chaos

References:

[1] Bohigas, O.: Random matrix theory and chaotic dynamics. In: Giannoni, M.J., Voros, A., Zinn-Justin, J., eds., Chaos et physique quantique, (École d’été des Houches, Session LII, 1989), Amsterdam: North Holland, 1991
[2] Berry M.V.: Regular and irregular semiclassical wave functions. J. Phys. A 10, 2083–2091 (1977) · Zbl 0377.70014
[3] Voros, A.: Semiclassical ergodicity of quantum eigenstates in the Wigner representation. In: Stochastic Behavior in Classical and Quantum Hamiltonian Systems, Casati, G., Ford, J., eds., Proceedings of the Volta Memorial Conference, Como, Italy, 1977, Lecture Notes in Phys. 93, Berlin: Springer, 1979, pp. 326–333
[4] Lazutkin, V.F.: Semiclassical asymptotics of eigenfunctions. In: Partial Differential Equations V, Berlin: Springer, 1999 · Zbl 0907.35093
[5] Schnirelman, A.I.: Ergodic properties of eigenfunctions. Usp. Mat. Nauk 29, no. 6 (180), 181–182 (1974) · Zbl 0324.58020
[6] Zelditch S.: Uniform distribution of the eigenfunctions on compact hyperbolic surfaces. Duke Math. J. 55, 919–941 (1987) · Zbl 0643.58029 · doi:10.1215/S0012-7094-87-05546-3
[7] Colinde Verdière Y.: Ergodicité et fonctions propres du laplacien. Commun. Math. Phys. 102, 497–502 (1985) · Zbl 0592.58050 · doi:10.1007/BF01209296
[8] Gérard P., Leichtnam É.: Ergodic properties of eigenfunctions for the Dirichlet problem. Duke Math. J. 71(2), 559–607 (1993) · Zbl 0788.35103 · doi:10.1215/S0012-7094-93-07122-0
[9] Zworski M., Zelditch S.: Ergodicity of eigenfunctions for ergodic billiards. Commun. Math. Phys. 175, 673–682 (1996) · Zbl 0840.58048 · doi:10.1007/BF02099513
[10] Bouzouina A., De Bièvre S.: Equipartition of the eigenfunctions of quantized ergodic maps on the torus. Commun. Math. Phys. 178, 83–105 (1996) · Zbl 0876.58041 · doi:10.1007/BF02104909
[11] Helffer B., Martinez A., Robert D.: Ergodicité et limite semi-classique. Commun. Math. Phys. 109, 313–326 (1987) · Zbl 0624.58039 · doi:10.1007/BF01215225
[12] Rudnick Z., Sarnak P.: The behavior of eigenstates of arithmetic hyperbolic manifolds. Commun. Math. Phys. 161, 195–213 (1994) · Zbl 0836.58043 · doi:10.1007/BF02099418
[13] Lindenstrauss E.: Invariant measures and arithmetic quantum unique ergodicity. Ann. Math. 163, 165–219 (2006) · Zbl 1104.22015 · doi:10.4007/annals.2006.163.165
[14] Hassell, A.: Ergodic billiards that are not quantum unique ergodic, with an appendix by A. Hassell, L. Hillairet. Preprint (2008) http://arxiv.org/abs/0807.0666v3[math,AP] , 2008, to appear in Ann. of Math · Zbl 1196.58014
[15] Faure F., Nonnenmacher S., De Bièvre S.: Scarred eigenstates for quantum cat maps of minimal periods. Commun. Math. Phys. 239, 449–492 (2003) · Zbl 1033.81024 · doi:10.1007/s00220-003-0888-3
[16] Faure F., Nonnenmacher S.: On the maximal scarring for quantum cat map eigenstates. Commun. Math. Phys. 245, 201–214 (2004) · Zbl 1071.81044 · doi:10.1007/s00220-003-1019-x
[17] Anantharaman N., Nonnenmacher S.: Entropy of semiclassical measures of the Walsh-quantized baker’s map. Ann. H. Poincaré 8, 37–74 (2007) · Zbl 1109.81035 · doi:10.1007/s00023-006-0299-z
[18] Kelmer, D.: Arithmetic quantum unique ergodicity for symplectic linear maps of the multidimensional torus. Preprint (2005), http://arxiv.org/abs/math-ph/0510079v5 , 2007, to appear in Ann. of Math. · Zbl 1202.81076
[19] Anantharaman N.: Entropy and the localization of eigenfunctions. Ann. of Math. 168(2), 435–475 (2008) · Zbl 1175.35036 · doi:10.4007/annals.2008.168.435
[20] Anantharaman N., Nonnenmacher S.: Half–delocalization of eigenfunctions of the Laplacian on an Anosov manifold. Ann. de l’Inst. Fourier 57(7), 2465–2523 (2007) · Zbl 1145.81033
[21] Anantharaman, N., Nonnenmacher, S., Koch, H.: Entropy of eigenfunctions. http://arXiv.org/abs/0704.1564v1[math-ph] , 2007 · Zbl 1175.81118
[22] Pakoński P., \.Zyczkowski K., Kuś M.: Classical 1D maps, quantum graphs and ensembles of unitary matrices. J. Phys. A 34(43), 9303–9317 (2001) · Zbl 0995.82040 · doi:10.1088/0305-4470/34/43/313
[23] Berkolaiko G., Keating J.K., Smilansky U.: Quantum Ergodicity for Graphs Related to Interval Maps. Commun. Math. Phys. 273, 137–159 (2007) · Zbl 1122.81037 · doi:10.1007/s00220-007-0244-0
[24] Zyczkowski K., Kuś M., Słomczyński W., Sommers H.-J.: Random unistochastic matrices. J. Phys. A 36(12), 3425–3450 (2003) · Zbl 1038.15012 · doi:10.1088/0305-4470/36/12/333
[25] Keller, G.: Equilibrium States in Ergodic Theory. London Mathematical Society Student Texts 42 Cambridge: Cambridge University Press, 1998 · Zbl 0896.28006
[26] De Bièvre, S.: Quantum chaos: a brief first visit. In: Second Summer School in Analysis and Mathematical Physics (Cuernavaca, 2000), Vol. 289 of Contemp. Math., Providence, RI: Amer. Math. Soc., 2001, pp. 161–218 · Zbl 1009.81020
[27] Deutsch D.: Uncertainty in quantum measurements. Phys. Rev. Lett. 50, 631–633 (1983) · doi:10.1103/PhysRevLett.50.631
[28] Kraus K.: Complementary observables and uncertainty relations. Phys. Rev. D 35, 3070–3075 (1987) · doi:10.1103/PhysRevD.35.3070
[29] Maassen H., Uffink J.B.M.: Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103–1106 (1988) · doi:10.1103/PhysRevLett.60.1103
[30] Baladi, V.: Positive Transfer Operators and Decay of Correlations. Advanced Series in Nonlinear Dynamics, Vol 16, Singapore: World Scientific, 2000 · Zbl 1012.37015
[31] Luzzatto, S.: Stochastic-like behavior in non-uniformly expanding maps. In: Handbook of Dynamical Systems, Vol. 1B, B. Hasselblatt and A. Katok (eds.), London: Elsevier, 2006, pp. 265–326 · Zbl 1130.37353
[32] Denker M., Holzmann H.: Markov partitions for fibre expanding systems. Colloq. Math. 110, 485–492 (2008) · Zbl 1142.37004 · doi:10.4064/cm110-2-11
[33] Gutkin, B.: Quantum towers and entropic bounds on semiclassical measures. In preparation · Zbl 1223.58028
[34] Riviere, G.: Entropy of semiclassical measures in dimension 2. http://arXiv.org/abs/0809.0230v2[math-ph] , 2008
[35] Nonnenmacher S., Rubin M.: Resonant eigenstates for a quantized chaotic system. Nonlinearity 20, 1387–1420 (2007) · Zbl 1138.81021 · doi:10.1088/0951-7715/20/6/004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.