×

Gradient weighted residuals for error indicators in FEM and BEM. (English) Zbl 1007.65085

Summary: A simple yet general approach is presented for checking the adequacy of approximate solutions obtained with finite element (FE) and boundary element (BE) weighted residual methods. In this method, which is called the gradient weighted residual technique, the computed residuals in the elements are weighted by appropriate gradients and thereby an indicator of the quality of solution is calculated. Such computations are carried out aposteriori and if need be a reanalysis is then carried out on a new mesh generated on the basis of the quality of the solution determined over the domain.

MSC:

65N15 Error bounds for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N38 Boundary element methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
Full Text: DOI

References:

[1] Noor, A. K.; Babuska, I., Quality assessment and control of finite element solutions, Finite Elem Anal Des, 3, 1-26 (1987) · Zbl 0608.73072
[2] Oden, J. T.; Demkowicz, L., Advances in adaptive improvements — a survey of adaptive finite element methods in computational mechanics, (Noor, A. K.; Oden, J. T., State-of-the-art surveys on computational mechanics (1989), ASME: ASME New York), 441-467
[3] (Brebbia, A. C.; Aliabadi, M. H., Adaptive finite and boundary element methods (1993), Computational Mechanics Publications, Elsevier: Computational Mechanics Publications, Elsevier Southampton, London) · Zbl 0787.00001
[4] Zhu, J. Z., A posteriori error estimation — the relationship between different procedures, Comput Meth Appl Mech Engng, 150, 411-422 (1997) · Zbl 0907.65104
[5] Kamiya, N.; Kita, E.; Koide, M., Error estimation and adaptive mesh refinement in boundary element methods, (Pina, H.; Brebbia, C. A., Boundary element technology VIII (1993), Computational mechanics Publications: Computational mechanics Publications Southampton), 343-352 · Zbl 0823.65113
[6] Rank, E., Adaptive and accuracy estimation for finite element and boundary integral element methods, (Babuska, I., Accuracy estimates and adaptive refinements in finite element computations (1986)), 79-94, (Chapter 4)
[7] Rencis, J. J.; Mullen, R. L., Solution of elasticity problems by a self-adaptive mesh refinement technique for boundary element computation, Int J Numer Meth Engng, 23, 1509-1527 (1986) · Zbl 0593.73088
[8] Rencis, J. J.; Mullen, R. L.; self-adapative, A., mesh refinement technique for boundary element solution of the Laplace equation, Comput Mech, 3, 309-319 (1988) · Zbl 0639.73003
[9] Tabarrok, B.; Qin, Z.; Stylianou, M., Generalized conservation checks in finite element analysis, Int J Numer Meth Engng, 43, 1295-1307 (1998) · Zbl 0936.74073
[10] Zienkiewicz, O. C.; Zhu, J. Z., A simple error estimator and adaptive procedure for practical engineering analysis, Int J Numer Meth Engng, 24, 337-357 (1987) · Zbl 0602.73063
[11] Rencis, J. J.; Jong, K. Y., An accuracy post-processor for boundary element analysis, (Brebbia, C. A., Boundary elements X (1988), CMM/Springer: CMM/Springer Berlin), 187-203
[12] Babuska, I.; Strouboulis, T.; Gangaraj, S. K.; Copps, K.; Datta, D. K., Practical aspects of a-posteriori estimation for reliable finite element analysis, Comput Struct, 66, 627-664 (1998) · Zbl 0933.74061
[13] Liu, L. L., On weak residual error estimation, SIAM — J Sci Comput, 17, 1249-1268 (1996) · Zbl 0859.65116
[14] Sussman, T.; Bathe, K. J., The gradient of the finite element variational indicator with respect to nodal point coordinates: an explicit calculation and application in fracture mechanics and mesh optimization, Int J Numer Meth Engng, 21, 763-774 (1985) · Zbl 0561.73071
[15] Henneberger, G.; Meunier, G.; Sabonnadiere, J. C.; Sattler, Ph. K.; Shen, D., Sensitivity analysis of the nodal position in the adaptive refinement of the finite element meshes, IEEE Trans Magn, 26, 787-790 (1990)
[16] Shi, F.; Ramesh, P.; Mukherjee, S., Adaptive mesh refinement of the boundary element method for potential problems by using mesh sensitivities as error indicators, Comput Mech, 16, 379-395 (1995) · Zbl 0848.73075
[17] Charafi, A.; Wrobel, L. C., A new h-adaptive refinement scheme for the boundary element method using local reanalysis, Appl Math Comput, 82, 239-271 (1997) · Zbl 0870.65107
[18] Guiggiani, M., Error indicators for adaptive mesh refinement in the boundary element method — A new approach, Int J Numer Meth Engng, 29, 1247-1269 (1990) · Zbl 0714.73084
[19] Guiggiani, M.; Lombardi, F., Self-adapative boundary elements with h-hierarchical shape functions, Adv Engng Software, 15, 269-277 (1992) · Zbl 0769.65086
[20] Zhao, Z., A simple error indicator for adaptive boundary element method, Comput Struct, 68, 433-443 (1998) · Zbl 0973.74646
[21] Muci-Kuchler, K. H.; Miranda-Valenzuela, J. C., A new error indicator based on stresses for adaptive meshing with Hermite boundary elements, Engng Anal Boundary Elem, 23, 657-670 (1999) · Zbl 0977.74074
[22] Kita, E.; Kamiya, N., Recent studies on adaptive boundary element methods, Adv Engng Software, 19, 21-32 (1994) · Zbl 0811.65100
[23] Stylianou, M. C.; Tabarrok, B., Consistent local error computations — Part I: theory, Int J Numer Meth Engng, 39, 3219-3234 (1996) · Zbl 0882.73085
[24] Stylianou, M. C.; Tabarrok, B., Consistent local error computations — Part II: F.E. applications, Int J Numer Meth Engng, 39, 3235-3246 (1996) · Zbl 0882.73085
[25] Robertson, S. R., Finite element analysis of quasi-steady coupled nonlinear heat and electric conduction problems, Numer Heat Transfer, 10, 423-439 (1986) · Zbl 0616.73115
[26] Meric, R. A., Boundary elements for joule heating of solids with orthotropic conductivities, Engng Anal Boundary Elem, 20, 253-260 (1998)
[27] Meric, R. A., Shape design sensitivity analysis and optimization for nonlinear heat and electric conduction problems, Numer Heat Transfer, Part A, 34, 185-203 (1998)
[28] Brebbia, C. A.; Telles, J. C.F.; Wrobel, L. C., Boundary element techniques (1984), Springer: Springer Berlin · Zbl 0556.73086
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.