×

Bounds for expected maxima of Gaussian processes and their discrete approximations. (English) Zbl 1361.60027

Summary: The paper deals with the expected maxima of continuous Gaussian processes \(X=(X_t)_{t\geq 0}\) that are Hölder continuous in \(L_2\)-norm and/or satisfy the opposite inequality for the \(L_2\)-norms of their increments. Examples of such processes include the fractional Brownian motion and some of its “relatives” (of which several examples are given in the paper). We establish upper and lower bounds for \(E\) \(\max_{0\leq t\leq 1} X_t\) and investigate the rate of convergence to that quantity of its discrete approximation \(E\) \(\max_{0\leq i\leq n} X_{i/n}\). Some further properties of these two maxima are established in the special case of the fractional Brownian motion.

MSC:

60G15 Gaussian processes
60G70 Extreme value theory; extremal stochastic processes
60G22 Fractional processes, including fractional Brownian motion
60J65 Brownian motion

References:

[1] DOI: 10.1016/j.spl.2004.06.035 · Zbl 1076.60027 · doi:10.1016/j.spl.2004.06.035
[2] DOI: 10.1214/aoms/1177700270 · Zbl 0246.62084 · doi:10.1214/aoms/1177700270
[3] DOI: 10.1093/biomet/74.1.95 · Zbl 0612.62123 · doi:10.1093/biomet/74.1.95
[4] DOI: 10.1016/j.spl.2008.01.071 · Zbl 1283.60068 · doi:10.1016/j.spl.2008.01.071
[5] DOI: 10.3150/13-BEJ534 · Zbl 1298.60043 · doi:10.3150/13-BEJ534
[6] DOI: 10.1016/0022-1236(67)90017-1 · Zbl 0188.20502 · doi:10.1016/0022-1236(67)90017-1
[7] DOI: 10.1007/BFb0080190 · doi:10.1007/BFb0080190
[8] Harper A., Pickands’ constant H{\(\alpha\)} does not equal 1/{\(\Gamma\)}(1/{\(\alpha\)}), for small {\(\alpha\)} (2014)
[9] DOI: 10.1090/conm/336/06034 · doi:10.1090/conm/336/06034
[10] DOI: 10.1016/j.spa.2006.02.006 · Zbl 1102.60032 · doi:10.1016/j.spa.2006.02.006
[11] Kahane J.-P., Adv. Math. Suppl. Stud 7 pp 417– (1981)
[12] Kahane J.-P., Some Random Series of Functions, 2. ed. (1985)
[13] Kolmogorov A.N., C. R. (Doklady) Acad. Sci. URSS (N.S.) 26 pp 115– (1940)
[14] DOI: 10.1016/j.spl.2008.10.009 · Zbl 1157.60313 · doi:10.1016/j.spl.2008.10.009
[15] DOI: 10.1007/978-3-642-24939-6 · Zbl 1248.60002 · doi:10.1007/978-3-642-24939-6
[16] DOI: 10.1007/978-3-540-75873-0 · Zbl 1138.60006 · doi:10.1007/978-3-540-75873-0
[17] DOI: 10.1016/S0167-7152(98)00290-9 · Zbl 0947.60033 · doi:10.1016/S0167-7152(98)00290-9
[18] Pisier G., Séminaires Analyse fonctionnelle [Functional anlysis seminars] (dit ”Maurey-Schwartz” [called ”Marty-Schwartz”]) 13 pp 1– (1979)
[19] Piterbarg V.I., Asymptotic Methods in the Theory of Gaussian Processes and Fields, Translations of Mathematical Monographs, 148 (1996)
[20] DOI: 10.1016/j.spa.2005.11.013 · Zbl 1100.60019 · doi:10.1016/j.spa.2005.11.013
[21] Samko S.G., Fractional Integrals and Derivatives. Theory and Applications (1993)
[22] Shao Q.-M., Statist. Sinica 6 pp 245– (1996)
[23] DOI: 10.2307/1426855 · Zbl 0422.60053 · doi:10.2307/1426855
[24] Sudakov V.N., Proc. Steklov Inst. Math. 2 pp 1– (1979)
[25] DOI: 10.1214/aop/1176988847 · Zbl 0798.60051 · doi:10.1214/aop/1176988847
[26] Talagrand M., The Generic Chaining. Upper and Lower Bounds of Stochastic Processes (2005) · Zbl 1075.60001
[27] DOI: 10.1007/978-3-642-54075-2 · Zbl 1293.60001 · doi:10.1007/978-3-642-54075-2
[28] DOI: 10.1090/S0002-9939-00-05367-3 · Zbl 0955.60036 · doi:10.1090/S0002-9939-00-05367-3
[29] Wood A.T.A., J. Comput. Graph. Statist. 3 pp 409– (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.