×

Simulation of a local time fractional stable motion. (English) Zbl 1216.60045

Donati-Martin, Catherine (ed.) et al., Séminaire de Probabilités XLIII, Poitiers, France, Juin 2009. Berlin: Springer (ISBN 978-3-642-15216-0/pbk; 978-3-642-15217-7/ebook). Lecture Notes in Mathematics 2006, 221-239 (2011).
Summary: The aim of this paper is to simulate sample paths of a class of symmetric \(\alpha\)-stable processes. This will be achieved by using the series expansion of the processes seen as shot noise series. In our case, as the general term of the series expansion has to be approximated, a first result is needed in shot noise theory. Then, this will lead to a convergence rate of the approximation towards the local time fractional stable motion.
For the entire collection see [Zbl 1202.60007].

MSC:

60G52 Stable stochastic processes
60G18 Self-similar stochastic processes
60F25 \(L^p\)-limit theorems

References:

[1] Ahrens, JH; Dieter, U., Computer methods for sampling from the exponential and normal distributions, Commun. ACM, 15, 873-882 (1972) · Zbl 0247.65002 · doi:10.1145/355604.361593
[2] Ahrens, JH; Dieter, U., Extensions of Forsythe’s method for random sampling from the normal distribution, Math. Comp., 27, 927-937 (1973) · Zbl 0285.65008
[3] Benassi, A.; Cohen, S.; Istas, J., Identification and properties of real harmonizable fractional Lévy motions, Bernoulli, 8, 1, 97-115 (2002) · Zbl 1005.60052
[4] Biermé, H.; Meerschaert, MM; Scheffler, H-P, Operator scaling stable random fields, Stoch. Process. Appl., 117, 3, 312-332 (2007) · Zbl 1111.60033 · doi:10.1016/j.spa.2006.07.004
[5] Cohen, S.; Lacaux, C.; Ledoux, M., A general framework for simulation of fractional fields, Stoch. Process. Appl., 118, 9, 1489-1517 (2008) · Zbl 1149.60032 · doi:10.1016/j.spa.2007.09.008
[6] Cohen, S.; Samorodnistky, G., Random rewards, fractional brownian local times and stable self-similar processes, Ann. Appl. Probab., 16, 1432-1461 (2006) · Zbl 1133.60016 · doi:10.1214/105051606000000277
[7] Crovella, ME; Bestavros, A., Self-similarity in World Wide Web traffic: evidence and possiblecauses, IEEE/ACM Trans. Networking, 5, 6, 835-846 (1997) · doi:10.1109/90.650143
[8] Davies, RB; Harte, DS, Tests for Hurst effect, Biometrika, 74, 1, 95-101 (1987) · Zbl 0612.62123 · doi:10.1093/biomet/74.1.95
[9] Geman, D.; Horowitz, J., Occupation densities, Ann. Probab., 8, 1, 1-67 (1980) · Zbl 0499.60081 · doi:10.1214/aop/1176994824
[10] Janicki, A.; Kokoszka, P., Computer investigation of the rate of convergence of Lepage type series to α-stable random variables, Statistics, 23, 4, 365-373 (1992) · Zbl 0813.60014 · doi:10.1080/02331889208802383
[11] Kaj, I., Taqqu, MS: Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach. In: Vares, M.E., Sidoravicius, V. (eds.) Brazilian Probability School, 10th anniversary volume (2007) · Zbl 1154.60020
[12] Kolmogorov, A.N.: Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum. CR (Doklady) Acad. URSS (NS) 26(1), 15-1 (1940)
[13] Lacaux, C., Real harmonizable multifractional Lévy motions, Ann. Inst. H. Poincar Probab. Statist., 40, 3, 259-277 (2004) · Zbl 1041.60038
[14] Lacaux, C., Series representation and simulation of multifractional Levy motions, Adv. Appl. Prob., 36, 1, 171-197 (2004) · Zbl 1053.60008 · doi:10.1239/aap/1077134469
[15] Ledoux, M., Talagrand, M.: Probability in Banach Spaces: Isoperimetry and Processes. Springer (1991) · Zbl 0748.60004
[16] Levy, JB; Taqqu, MS, Renewal reward processes with heavy-tailed interrenewal times and heavy-tailed rewards, Bernoulli, 6, 1, 23-44 (2000) · Zbl 0954.60071 · doi:10.2307/3318631
[17] Mandelbrot, BB; Ness, JWV, Fractional Brownian Motions, Fractional Noises and Applications. SIAM Rev., 10, 4, 422-437 (1968) · Zbl 0179.47801
[18] Mikosch, T.; Resnick, S.; Rootzen, H.; Stegeman, A., Is network traffic approximated by stable Levy motion or fractional Brownian motion, Ann. Appl. Probab., 12, 1, 23-68 (2002) · Zbl 1021.60076 · doi:10.1214/aoap/1015961155
[19] Pitt, L., Local times for gaussian vector fields, Indiana Univ. Math. J., 27, 309-330 (1978) · Zbl 0382.60055 · doi:10.1512/iumj.1978.27.27024
[20] Rosiński, J., On path properties of certain infinitely divisible Processes, Stoch. Process. Appl., 33, 1, 73-87 (1987) · Zbl 0715.60051 · doi:10.1016/0304-4149(89)90067-7
[21] Rosiński, J., On series representations of infinitely divisible random vectors, Ann. Probab., 18, 1, 405-430 (1990) · Zbl 0701.60004 · doi:10.1214/aop/1176990956
[22] Rosiński, J.: Series representations of Lévy processes from the perspective of point processes. In: Lévy Processes, pp. 401-415. Birkhäuser Boston, Boston, MA (2001) · Zbl 0985.60048
[23] Samorodnitsky, G., Taqqu, M.: Stable Non-Gaussian Random Processes. Chapman & Hall (1994) · Zbl 0925.60027
[24] Wood, ATA; Chan, G., Simulation of stationary Gaussian processes in [0, 1]^d, J. Comput. Graph. Stat., 3, 4, 409-432 (1994)
[25] Xiao, Y.: Strong local nondeterminism and the sample path properties of Gaussian random fields. In: Asymptotic Theory in Probability and Statistics with Applications, pp. 136-176. Higher Education Press, Beijing (2007) · Zbl 1269.60043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.