×

Revisiting the relations between Hurst exponent and fractional differencing parameter for long memory. (English) Zbl 1533.60047

Summary: This study aims to verify the efficiency of the estimating methods of long memory process based on the linear relationship between the Hurst exponent (H) and the fractional differencing parameter (d), which are the two approaches used to identify the long memory process. By using the Monte Carlo simulation and empirical examinations, the results show that there is a distinct linear relationship between the Hurst exponent and the fractional differencing parameter. This linear relationship may provide an efficient estimation of the range of Hurst exponent and fractional differencing parameter with each other when the stable index of the stable distribution is close to 2. However, according to the findings, the detailed form of linear equation is impacted by the fat tailed distribution, which becomes more volatile as the stable index of stable distribution is less than 2. Therefore, researchers should be cautious when using the linear relation to estimate H and d them by each other when the distribution has fat tail.

MSC:

60G22 Fractional processes, including fractional Brownian motion
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
Full Text: DOI

References:

[1] Hurst, H. E., Long-term storage capacity of reservoirs, Trans. Am. Soc. Civ. Eng., 116, 770-808 (1951)
[2] Mandelbrot, B. B.; Van Ness, J. W., Fractional Brownian motions: Fractional noises and applications, SIAM Rev., 4, 422-437 (1968) · Zbl 0179.47801
[3] Granger, C. W.J.; Joyeux, R., An introduction to long memory time series and fractionally differencing, J. Time Series Anal., 1, 1, 15-29 (1980) · Zbl 0503.62079
[4] Hosking, J. R.M., Fractional differencing, Biometrika, 68, 165-176 (1981) · Zbl 0464.62088
[5] Taqqu, M. S., Fractional Brownian motion and long-range dependence, (Doukhan, P.; Oppenheim, G.; Taqqu, M. S., Theory and Applications of Long-Range Dependence (2003), Birkhäuser: Birkhäuser Boston, MA), 5-38 · Zbl 1039.60041
[6] Geweke, J.; Porter-Hudak, S., The estimation and application of long memory time series models, J. Time Series Anal., 4, 4, 221-238 (1983) · Zbl 0534.62062
[7] Hosking, J. R.M., Modeling persistence in hydrological time series using fractional differencing, Water Resour. Res., 20, 12, 1898-1908 (1984)
[8] Peters, E. E., Fractal Market Analysis: Applying Chaos Theory to Investment and Economics (1994), John Wiley & Sons, Inc.
[9] Hauser, M. A.; Reschenhofer, E., Estimation of the fractionally differencing parameter with the R/S method, Comput. Statist. Data Anal., 20, 569-579 (1995) · Zbl 0900.62463
[10] Ellis, C., Estimation of the ARFIMA (p, d, q) fractional differencing parameter (d) using the classical rescaled adjusted range technique, Int. Rev. Financ. Anal., 8, 53-65 (1999)
[11] Samorodnitsky, G.; Taqqu, M. S., Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance, 1 (1994), CRC Press: CRC Press Boca Raton, FL, USA · Zbl 0925.60027
[12] Sheng, H.; Chen, Y., FARIMA with stable innovations model of Great Salt Lake elevation time series, Signal Process., 91, 553-561 (2011) · Zbl 1203.94053
[13] Mandelbrot, B. B.; Wallis, J. R., Robustness of the rescaled range R/S in the measurement of noncyclic long-run statistical dependence, Water Resour. Res., 5, 5, 967-988 (1969)
[14] Lo, A. W., Long-term memory in stock market prices, Econometrica, 59, 5, 1279-1313 (1991) · Zbl 0781.90023
[15] Giraitis, L.; Kokoszka, P.; Leipus, R.; Teyssière, G., Rescaled variance and related tests for long memory in volatility and levels, J. Econometrics, 112, 2, 265-294 (2003) · Zbl 1027.62064
[16] Cajueiro, D. O.; Tabak, B. M., The rescaled variance statistic and the determination of the Hurst exponent, Math. Comput. Simulation, 70, 3, 172-179 (2005) · Zbl 1077.82013
[17] Peng, C. K.; Havlin, S.; Staneley, H. E.; Goldberger, A. L., Quantification of scaling exponents and crossover phenonmena in nonstationary heartbeat time series, Chaos, 5, 1, 82-87 (1995)
[18] Robinson, P. M., Gaussian semiparametric estimation of long range dependence, Ann. Statist., 23, 5, 1630-1661 (1995) · Zbl 0843.62092
[19] Shimotsu, K.; Phillips, P. C.B., Exact local whittle estimation of fractional integration, Ann. Statist., 33, 4, 1890-1933 (2005) · Zbl 1081.62069
[20] Luo, Y.; Huang, Y., A new combined approach on Hurst exponent estimate and its applications in realized volatility, Physica A, 492, 1364-1372 (2018)
[21] Shimotsu, K., Exact local whittle estimation of fractional integration with unknown mean and time trend, Econometric Theory, 26, 2, 501-540 (2010) · Zbl 1185.62163
[22] Reisen, V.; Abraham, B.; Lopes, S., Estimation of parameters in ARFIMA processes: A simulation study, Comm. Statist. Simulation Comput., 30, 787-803 (2001) · Zbl 1008.62665
[23] Reisen, V. A., Estimation of the fractional difference parameter in the ARIMA (p, d, q) model using the smoothed periodogram, J. Time Series Anal., 15, 335-350 (1994) · Zbl 0803.62084
[24] Sheng, H.; Chen, Y.; Qiu, T., Fractional Processes and Fractional-Order Signal Processing: Techniques and Applications (2011), Springer Science & Business Media: Springer Science & Business Media New York
[25] Nolan, J. P., Stable Distributions: Models for Heavy Tailed Data (2010), Birkhaüser: Birkhaüser Boston
[26] Davis, R. B.; Harte, D. S., Tests for Hurst effect, Biometrika, 74, 95-101 (1987) · Zbl 0612.62123
[27] Sánchez-Granero, M. A.; Fernández-Martínez, M.; Trinidad-Segovia, J. E., Introducing fractal dimension algorithms to calculate the Hurst exponent of financial time series, Eur. Phys. J. B, 85, 3, 86 (2012)
[28] Barunik, J.; Kristoufek, L., On Hurst exponent estimation under heavy-tailed distributions, Physica A, 389, 18, 3844-3855 (2010)
[29] Chow, K. V.; Denning, K. C.; Ferris, S.; Noronha, G., Long-term and short-term price memory in the stock market, Econom. Lett., 49, 3, 287-293 (1995) · Zbl 0900.90023
[30] Bhardwaj, G.; Swanson, N. R., An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series, J. Econometrics, 131, 1-2, 539-578 (2006) · Zbl 1337.62344
[31] Floros, C.; Jaffry, S.; Lima, G., Long memory in the Portuguese stock market, Stud. Econ. Finance, 24, 3, 220-232 (2007)
[32] Duppati, G.; Kumar, A. S.; Scrimgeour, F.; Li, L., Long memory volatility in Asian stock markets, Pac. Account. Rev., 29, 3, 423-442 (2017)
[33] Andersen, T. G.; Bollerslev, T., Answering the skeptics: Yes, standard volatility models do provide accurate forecasts, Internat. Econom. Rev., 39, 4, 885-905 (1998)
[34] Bai, J.; Perron, P., Computation and analysis of multiple structural change models, J. Appl. Econometrics, 18, 1-22 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.