×

Observation time dependent mean first passage time of diffusion and subdiffusion processes. (English) Zbl 1456.60218

Summary: The mean first passage time, one of the important characteristics for a stochastic process, is often calculated assuming the observation time is infinite. However, in practice, the observation time, \(T\), is always finite and the mean first passage time (MFPT) is dependent on the length of the observation time. In this work, we investigate the observation time dependence of the MFPT of a particle freely moving in the interval \([- L,L]\) for a simple diffusion model and five different models of subdiffusion, the fractional diffusion equation (FDE), scaled Brown motion (SBM), fractional Brownian motion (FBM), stationary Markovian approximation of SBM, and the aging continuous-time random walk model. We find that the MFPT is linearly dependent on \(T\) in the small \(T\) limit for all the models investigated, while the large-\(T\) behavior of the MFPT is sensitive to stochastic properties of the transport model in question. We also discuss the relationship between the observation time, \(T\), dependence and the travel length, \(L\), dependence of the MFPT. Our results suggest the observation time dependency of the MFPT can serve as an experimental measure that is far more sensitive to stochastic properties of transport processes than the mean square displacement.

MSC:

60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.)
60K50 Anomalous diffusion models (subdiffusion, superdiffusion, continuous-time random walks, etc.)
82C70 Transport processes in time-dependent statistical mechanics
60G50 Sums of independent random variables; random walks

Software:

DLMF; Algorithm 368

References:

[1] Chandrasekhar S 1943 Stochastic problems in physics and astronomy Rev. Mod. Phys.15 1 · Zbl 0061.46403 · doi:10.1103/RevModPhys.15.1
[2] Scher H and Montroll E W 1975 Anomalous transit-time dispersion in amorphous solids Phys. Rev. B 12 2455 · doi:10.1103/PhysRevB.12.2455
[3] Pfister G and Scher H 1977 Time-dependent electrical transport in amorphous solids: As2Se3 Phys. Rev. B 15 2062 · doi:10.1103/PhysRevB.15.2062
[4] Pfister G and Scher H 1978 Dispersive (non-Gaussian) transient transport in disordered solids Adv. Phys.27 747 · doi:10.1080/00018737800101474
[5] Zumofen G, Blumen A and Klafter J 1990 Current flow under anomalous-diffusion conditions: Lévy walks Phys. Rev. A 41 4558 · doi:10.1103/PhysRevA.41.4558
[6] Blom P W M and Vissenberg M C J M 1998 Dispersive hole transport in poly(p-Phenylene Vinylene) Phys. Rev. Lett.80 3819 · doi:10.1103/PhysRevLett.80.3819
[7] Scher H, Shlesinger M F and Bendler J T 1991 Time-scale invariance in transport and relaxation Phys. Today44 26 · doi:10.1063/1.881289
[8] Gu Q, Schiff E A, Grebner S, Wang F and Schwarz R 1996 Non-Gaussian Transport Measurements and the Einstein Relation in Amorphous Silicon Phys. Rev. Lett.76 3196 · doi:10.1103/PhysRevLett.76.3196
[9] Havlin S, Movshovitz D, Trus B and Weiss G H 1985 Probability densities for the displacement of random walks on percolation clusters J. Phys. A 18 L719 · doi:10.1088/0305-4470/18/12/006
[10] Porto M, Bunde A, Havlin S and Roman H E 1977 Structural and dynamical properties of the percolation backbone in two and three dimensions Phys. Rev. E 56 1667 · doi:10.1103/PhysRevE.56.1667
[11] Young W, Pumir A and Pomeau Y 1989 Anomalous diffusion of tracer in convection rolls Phys. Fluids A 1 462 · Zbl 0659.76097 · doi:10.1063/1.857415
[12] Cardoso O and Tabeling P 1988 Anomalous diffusion in a linear array of vortices Europhys. Lett.7 225 · doi:10.1209/0295-5075/7/3/007
[13] Amblard F, Maggs A C, Yurke B, Pargellis A N and Leibler S 1996 Subdiffusion and anomalous local viscoelasticity in actin networks Phys. Rev. Lett.77 4470 · doi:10.1103/PhysRevLett.77.4470
[14] Barkai E and Klafter J 1998 Comment on ‘Subdiffusion and anomalous local viscoelasticity in actin networks’ Phys. Rev. Lett.81 1134 · doi:10.1103/PhysRevLett.81.1134
[15] Weber H W and Kimmich R 1996 Anomalous segment diffusion in polymers and NMR relaxation spectroscopy Macromolecules26 2597 · doi:10.1021/ma00062a031
[16] Fischer E, Kimmich R and Fatkullin N 1996 NMR field gradient diffusometry of segment displacements in melts of entangled polymers J. Chem. Phys.104 9174 · doi:10.1063/1.471608
[17] Fischer E, Kimmich R, Beginn U, Möller M and Fatkullin N 1999 Segment diffusion in polymers confined in nanopores: A fringe-field NMR diffusometry study Phys. Rev. E 59 4079 · doi:10.1103/PhysRevE.59.4079
[18] Doi M and Edwards S F 1988 The Theory of Polymer Dynamics (Oxford: Clarendon)
[19] Wyss W 1986 The fractional diffusion equation J. Math. Phys.27 2782 · Zbl 0632.35031 · doi:10.1063/1.527251
[20] Schneider W and Wyss W 1989 Fractional diffusion and wave equations J. Math. Phys.30 134 · Zbl 0692.45004 · doi:10.1063/1.528578
[21] Metzler R, Barkai E and Klafter J 1999 Anomalous diffusion and relaxation close to thermal equilibrium: a fractional fokker-planck equation approach Phys. Rev. Lett.82 3563 · doi:10.1103/PhysRevLett.82.3563
[22] Barkai E, Metzler R and Klafter J 2000 From continuous time random walks to the fractional Fokker-Planck equation Phys. Rev. E 61 132 · doi:10.1103/PhysRevE.61.132
[23] Barkai E 2002 CTRW pathways to the fractional diffusion equation Chem. Phys.284 13 · doi:10.1016/S0301-0104(02)00533-5
[24] Montroll E W and Weiss G H 1965 Random walks on lattices. II J. Math. Phys.6 167 · Zbl 1342.60067 · doi:10.1063/1.1704269
[25] Metzler R, Barkai E and Klafter J 1999 Deriving fractional Fokker-Planck equations from a generalised master equation Europhys. Lett.46 431 · doi:10.1209/epl/i1999-00279-7
[26] Edery Y, Guadagnini A, Scher H and Berkowitz B 2014 Origins of anomalous transport in heterogeneous media: structural and dynamic controls Water Resour. Res.50 1490 · doi:10.1002/2013WR015111
[27] Gitterman M 2000 Mean first passage time for anomalous diffusion Phys. Rev. E 62 6065 · doi:10.1103/PhysRevE.62.6065
[28] Yuste S and Lindenberg K 2004 Comment on ‘Mean first passage time for anomalous diffusion’ Phys. Rev. E 69 033101 · doi:10.1103/PhysRevE.69.033101
[29] Gitterman M 2004 Reply to ‘Comment on ‘Mean first passage time for anomalous diffusion’’ Phys. Rev. E 69 033102 · doi:10.1103/PhysRevE.69.033102
[30] Lua R C and Grosberg A Y 2005 First passage times and asymmetry of DNA translocation Phys. Rev. E 72 061918 · doi:10.1103/PhysRevE.72.061918
[31] Redner S 2001 A Guide to First-Passage Processes (Cambridge: Cambridge University Press) · Zbl 1128.60002 · doi:10.1017/CBO9780511606014
[32] Fürth R 1917 Einige Untersuchungen über Brownsche Bewegung an einem Einzelteilchen Ann. Phys., Lpz.358 177 · doi:10.1002/andp.19173581102
[33] Klein G 1952 Mean first-passage times of Brownian motion and related problems Proc. R. Soc. A 211 431 · Zbl 0049.26203 · doi:10.1098/rspa.1952.0051
[34] Metzler R and Klafter J 2000 Boundary value problems for fractional diffusion equations Physica A 278 107 · doi:10.1016/S0378-4371(99)00503-8
[35] Podlubny I 1998 Fractional Differential Equations: an Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications vol 198 (Amsterdam: Elsevier) · Zbl 0922.45001
[36] Olver F W, Lozier D W, Boisvert R F and Clark C W 2010 NIST Handbook of Mathematical Functions Hardback and CD-ROM (Cambridge: CAMBRIDGE University Press) · Zbl 1198.00002
[37] Condamin S, Bénichou O and Klafter J 2007 First-passage time distributions for subdiffusion in confined geometry Phys. Rev. Lett.98 250602 · doi:10.1103/PhysRevLett.98.250602
[38] Lim S and Muniandy S 2002 Self-similar Gaussian processes for modeling anomalous diffusion Phys. Rev. E 66 021114 · doi:10.1103/PhysRevE.66.021114
[39] Jeon J-H, Chechkin A V and Metzler R 2014 Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion Phys. Chem. Chem. Phys.16 15811 · doi:10.1039/C4CP02019G
[40] Safdari H, Chechkin A V, Jafari G R and Metzler R 2015 Aging scaled Brownian motion Phys. Rev. E 91 042107 · doi:10.1103/PhysRevE.91.042107
[41] Kolmogorov A N 1940 Wienersche spiralen und einige andere interessante Kurven in Hilbertscen Raum, C. R. (Doklady) Acad. Sci. URSS26 115 · Zbl 0022.36001
[42] Yaglom A M 1958 Correlation theory of processes with stationary random increments of order n Series, Am. Math. Soc. Transl.8 87 · Zbl 0080.34903
[43] Mandelbrot B B 1965 Une classes de processus stochastiques homothetiques a soi—application a la loi climatologique de H. E. Hurst Compt. Rend. Acad. Sci.260 3274 · Zbl 0127.09501
[44] Mandelbrot B B and van Ness J W 1968 Fractional Brownian motions, fractional noises and applications SIAM Rev.10 422 · Zbl 0179.47801 · doi:10.1137/1010093
[45] Hurst H E 1951 Long-term storage capacity of reservoirs Trans. Am. Soc. Civ. Eng.116 770
[46] Szymanski J and Weiss M 2009 Elucidating the origin of anomalous diffusion in crowded fluids Phys. Rev. Lett.103 038102 · doi:10.1103/PhysRevLett.103.038102
[47] Jeon J-H and Metzler R 2010 Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries Phys. Rev. E 81 021103 · doi:10.1103/PhysRevE.81.021103
[48] Kim J-H and Lee S 2008 Theory of non-markovian rate processes J. Phys. Chem. B 112 577 · doi:10.1021/jp075099b
[49] Sokolov I M 2003 Cyclization of a polymer: first-passage problem for a non-markovian process Phys. Rev. Lett.90 080601 · doi:10.1103/PhysRevLett.90.080601
[50] Ding M and Yang W 1995 Distribution of the first return time in fractional Brownian motion and its application to the study of on-off intermittency Phys. Rev. E 52 207 · doi:10.1103/PhysRevE.52.207
[51] Molchan G M 1999 Maximum of a fractional Brownian motion: probabilities of small values Commun. Math. Phys.205 97 · Zbl 0942.60065 · doi:10.1007/s002200050669
[52] Davies R B and Harte D S 1987 Tests for Hurst effect Biometrika74 95 · Zbl 0612.62123 · doi:10.1093/biomet/74.1.95
[53] Kim J-H and Lee S 2009 A rigorous foundation of the diffusion-influenced bimolecular reaction kinetics J. Chem. Phys.131 014503 · doi:10.1063/1.3158469
[54] Kim J-H, Lee S, Lee J and Lee S 2009 Kinetics of collision-induced reactions between hard-sphere reactants J. Chem. Phys.131 164503 · doi:10.1063/1.3251144
[55] Guggenberger T, Pagnini G, Vojta T and Metzler R 2019 Fractional Brownian motion in a finite interval: correlations effect depletion or accretion zones of particles near boundaries New J. Phys.21 022002 · doi:10.1088/1367-2630/ab075f
[56] Sanders L P and Ambjörnsson T 2012 First passage times for a tracer particle in single file diffusion and fractional Brownian motion J. Chem. Phys.136 175103 · doi:10.1063/1.4707349
[57] Stehfest H 1970 Numerical inversion of Laplace transforms algorithm 368 Commun. ACM13 47 · doi:10.1145/361953.361969
[58] Monthus C and Bouchaud J-P 1996 Models of traps and glass phenomenology J. Phys. A 29 3847 · Zbl 0900.82090 · doi:10.1088/0305-4470/29/14/012
[59] Barkai E 2003 Aging in subdiffusion generated by a deterministic dynamical system Phys. Rev. Lett.90 104101 · doi:10.1103/PhysRevLett.90.104101
[60] Bouchaud J-P 1992 Weak ergodicity breaking and aging in disordered systems J. Phys. I 2 1705 · doi:10.1051/jp1:1992238
[61] Schulz J H, Barkai E and Metzler R 2014 Aging renewal theory and application to random walks Phys. Rev. X 4 011028 · doi:10.1103/PhysRevX.4.011028
[62] Barkai E and Cheng Y-C 2003 Aging continuous time random walks J. Chem. Phys.118 6167 · doi:10.1063/1.1559676
[63] Krüsemann H, Schwarzl R and Metzler R 2016 Ageing Scher-Montroll Transport Tranport Porous Med.115 327 · doi:10.1007/s11242-016-0686-y
[64] Abramowitz M and Stegun I A 1965 Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables vol 55 (New York: Dover Publications)
[65] Krüsemann H, Godec A and Metzler R 2014 First-passage statistics for aging iffusion in systems with annealed and quenched disorder Phys. Rev. E 89 040101 · doi:10.1103/PhysRevE.89.040101
[66] Krüsemann H, Godec A and Metzler R 2015 Ageing first passage time density in continuous time random walks and quenched energy landscapes J. Phys. A 48 285001 · Zbl 1372.60065 · doi:10.1088/1751-8113/48/28/285001
[67] Jeon J H, Chechkin A V and Metzler R 2011 First passage behaviour of fractional Brownian motion in two-dimensional wedge domains Europhys. Lett.94 20008 · doi:10.1209/0295-5075/94/20008
[68] Dubbeldam J L A, Rostiashvili V G, Milchev A and Vilgis T A 2011 Fractional Brownian motion approach to polymer translocation: the governing equation of motion 2011 Phys. Rev. E 83 011802 · doi:10.1103/PhysRevE.83.011802
[69] Zoia A, Rosso A and Majumdar S N 2009 Asymptotic behavior of self-affine processes in semi-infinite domains Phys. Rev. Lett.102 120602 · doi:10.1103/PhysRevLett.102.120602
[70] Chuang J, Kantor Y and Kardar M 2001 Anomalous dynamics of translocation Phys. Rev. E 65 011802 · doi:10.1103/PhysRevE.65.011802
[71] Chatelain C, Kantor Y and Kardar M 2008 Probability distributions for polymer translocation Phys. Rev. E 78 021129 · doi:10.1103/PhysRevE.78.021129
[72] Derrida B, Bray A J and Godreche C 1994 Non-trivial exponents in the zero temperature dynamics of the 1D Ising and Potts models J. Phys. A 27 L357 · Zbl 0850.68276 · doi:10.1088/0305-4470/27/16/014
[73] Bray A J, Derrida B and Godréche C 1994 Non-trivial algebraic decay in a soluble model of coarsening Europhys. Lett.27 175 · Zbl 0935.82016 · doi:10.1209/0295-5075/27/3/001
[74] Majumdar S N 1999 Persistence in nonequilibrium systems Curr. Sci.77 370
[75] Lee H, Song S, Kim J-H and Sung J 2019 Survival probability dynamics of scaled brownian motion: effect of nonstationary property Bull. Korean Chem. Soc.40 847-50 · doi:10.1002/bkcs.11831
[76] Grebenkov D S, Metzler R and Oshanin G 2018 Strong defocusing of molecular reaction times results from an interplay of geometry and reaction control Commun. Chem.1 96 · doi:10.1038/s42004-018-0096-x
[77] Godec A and Metzler R 2016 Universal proximity effect in target search kinetics in the few-encounter limit Phys. Rev. X 6 041037 · doi:10.1103/PhysRevX.6.041037
[78] Paris R B 2017 The asymptotics of the generalised Bessel function Math. Aeterna7 381
[79] Risken H 1984 The Fokker-Planck Equation: Methods of Solution and Applications (Berlin: Springer) p 63 · Zbl 0546.60084 · doi:10.1007/978-3-642-96807-5_4
[80] Evans D J and Morriss G P 1988 Time-dependent response theory Mol. Phys.64 521 · doi:10.1080/00268978800100373
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.