×

\(\epsilon\)-strong simulation of fractional Brownian motion and related stochastic differential equations. (English) Zbl 07371743

Summary: Consider a fractional Brownian motion (fBM) \( B^H = \{ B^H ( t ) : t \in [ 0 , 1 ] \}\) with Hurst index \(H \in ( 0 , 1 )\). We construct a probability space supporting both \(B^H\) and a fully simulatable process \(\hat{B}_\epsilon^H\) such that \[ \sup_{t \in [ 0 , 1 ]} \left| B^H ( t ) - \hat{B}_\epsilon^H ( t ) \right| \leq \epsilon \] with probability one for any user-specified error bound \(\epsilon > 0\). When \(H > 1 / 2\), we further enhance our error guarantee to the \(\alpha \)-Hölder norm for any \(\alpha \in ( 1 / 2 , H )\). This enables us to extend our algorithm to the simulation of fBM-driven stochastic differential equations \(Y = \{ Y ( t ) : t \in [ 0 , 1 ] \} \). Under mild regularity conditions on the drift and diffusion coefficients of \(Y\), we construct a probability space supporting both \(Y\) and a fully simulatable process \(\hat{Y}_\epsilon\) such that \[ \sup_{t \in [ 0 , 1 ]} \left| Y ( t ) - \hat{Y}_\epsilon ( t ) \right| \leq \epsilon \] with probability one. Our algorithms enjoy the tolerance-enforcement feature, under which the error bounds can be updated sequentially in an efficient way. Thus, the algorithms can be readily combined with other advanced simulation techniques to estimate the expectations of functionals of fBMs efficiently.

MSC:

65C05 Monte Carlo methods
60G22 Fractional processes, including fractional Brownian motion

References:

[1] [1] Abry P , Sellan F (1996) The wavelet-based synthesis for fractional Brownian motion proposed by F. Sellan and Y. Meyer: Remarks and fast implementation. Appl. Comput. Harmon Anal. 3(4):377-383.Crossref, Google Scholar · Zbl 0862.60036 · doi:10.1006/acha.1996.0030
[2] [2] Ayache A , Taqqu M (2003) Rate optimality of wavelet series approximations of fractional Brownian motion. J. Fourier Anal. Appl. 9(5):465-494.Crossref, Google Scholar · Zbl 1050.60043 · doi:10.1007/s00041-003-0022-0
[3] [3] Beskos A , Roberts G (2005) Exact simulation of diffusions. Ann. Appl. Probability 15(4):2422-2444.Crossref, Google Scholar · Zbl 1101.60060 · doi:10.1214/105051605000000485
[4] [4] Beskos A , Peluchetti S , Roberts G (2012) ɛ-Strong simulation of the Brownian path. Bernoulli 18(4):1223-1248.Crossref, Google Scholar · Zbl 1263.65007 · doi:10.3150/11-BEJ383
[5] [5] Blanchet J , Chen X (2015) Steady-state simulation for reflected Brownian motion and related networks. Ann. Appl. Probability 25(6):3209-3250.Crossref, Google Scholar · Zbl 1332.60120 · doi:10.1214/14-AAP1072
[6] [6] Blanchet J , Dong J (2015) Perfect sampling for infinite server and loss systems. Adv. Appl. Probability 47(3):761-786.Crossref, Google Scholar · Zbl 1331.65025 · doi:10.1239/aap/1444308881
[7] [7] Blanchet J , Sigman K (2011) On exact sampling of stochastic perpetuities. J. Appl. Probability 48(A):165-182.Google Scholar · Zbl 1230.65012
[8] [8] Blanchet J , Zhang F (2017) Exact simulation for multivariate Itó diffusions. Preprint, submitted June 16, https://arxiv.org/abs/1706.05124.Google Scholar
[9] [9] Blanchet J , Chen X , Dong J (2017) ɛ-Strong simulation for multidimensional stochastic differential equations via rough path analysis. Ann. Appl. Probability 27(1):275-336.Crossref, Google Scholar · Zbl 1436.65012 · doi:10.1214/16-AAP1204
[10] [10] Chen N , Huang Z (2013) Localization and exact simulation of Brownian motion-driven stochastic differential equations. Math. Oper. Res. 38(3):591-616.Link, Google Scholar · Zbl 1291.65011
[11] [11] Coutin L , Qian Z (2002) Stochastic analysis, rough path analysis and fractional Brownian motions. Probability Theory Related Fields 122(1):108-140.Google Scholar · Zbl 1047.60029
[12] [12] Davie A (2008) Differential equations driven by rough paths: An approach via discrete approximation. Appl. Math. Res. Express Art. ID abm 009, 40.Google Scholar · Zbl 1163.34005
[13] [13] Davies R , Harte D (1987) Tests for Hurst effect. Biometrika 74(1):95-101.Crossref, Google Scholar · Zbl 0612.62123 · doi:10.1093/biomet/74.1.95
[14] [14] Dieker A (2004) Simulation of fractional Brownian motion. Masters thesis, Department of Mathematical Sciences, University of Twente, Enschede, Netherlands.Google Scholar
[15] [15] Dieker A , Mandjes M (2003) On spectral simulation of fractional Brownian motion. Probability Engrg. Inform. Sci. 17(3):417-434.Crossref, Google Scholar · Zbl 1336.60076 · doi:10.1017/S0269964803173081
[16] [16] Dietrich C , Newsam G (1997) Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix. SIAM J. Sci. Comput. 18(4):1088-1107.Crossref, Google Scholar · Zbl 0890.65149 · doi:10.1137/S1064827592240555
[17] [17] Durbin J (1960) The fitting of time-series models. Rev. Internat. Statist. Inst. 28(3):233-244.Google Scholar · Zbl 0101.35604
[18] [18] Dzhaparidze K , Zanten HV (2004) A series expansion of fractional Brownian motion. Probab. Theory Related Fields 130(1):39-55.Crossref, Google Scholar · Zbl 1059.60048 · doi:10.1007/s00440-003-0310-2
[19] [19] Giles M (2008) Multilevel Monte Carlo path simulation. Oper. Res. 56(3):607-617.Link, Google Scholar · Zbl 1167.65316
[20] [20] Glynn P (2016) Exact simulation vs exact estimation. TMK Roeder, PI Frazier, R Szechtman, E Zhou, T Huschka, SE Chick, eds. Proc. of the 2016 Winter Simulation Conf. (IEEE, Piscataway, NJ), 193-205.Google Scholar
[21] [21] Höfling F , Franosch T (2013) Anomalous transport in the crowded world of biological cells. Rep. Progress Phys. 76(4):046602.Crossref, Google Scholar · doi:10.1088/0034-4885/76/4/046602
[22] [22] Huber M (2016) Nearly optimal Bernoulli factories for linear functions. Combin. Probability Comput. 25(4):577-591.Crossref, Google Scholar · Zbl 1372.65025 · doi:10.1017/S0963548315000371
[23] [23] Kühn T , Linde W (2002) Optimal series representation of fractional Brownian sheets. Bernoulli 8(5):669-696.Google Scholar · Zbl 1012.60074
[24] [24] Laskin N (2000) Fractional market dynamics. Physica A 287(3-4):482-492.Crossref, Google Scholar · doi:10.1016/S0378-4371(00)00387-3
[25] [25] Lau WA , Erramilli JW , Willinger W (1995) Self-similar traffic generation: the random midpoint displacement algorithm and its properties. Proc. IEEE Internat. Conf. Comm. ICC’95, vol. 1 (IEEE, Piscataway, NJ), 466-472.Google Scholar
[26] [26] Lejay A (2010) Controlled differential equations as Young integrals: A simple approach. J. Differential Equations 249(8):1777-1798.Crossref, Google Scholar · Zbl 1216.34058 · doi:10.1016/j.jde.2010.05.006
[27] [27] Levinson N (1946) The Wiener root mean square error criterion in filter design and prediction. J. Math. Phys. 25(1-4):261-278.Crossref, Google Scholar · doi:10.1002/sapm1946251261
[28] [28] Liu Z , Blanchet J , Dieker A , Mikosch T (2019) On logrithmically optimal exact simulation of max-stable and related random fields on a compact set. Bernoulli 25(4A):2949-2981.Crossref, Google Scholar · Zbl 1428.62426 · doi:10.3150/18-BEJ1076
[29] [29] Lyons T (1998) Differential equations driven by rough signals. Revista Matematica Iberoam ericana 14(2):215-310.Crossref, Google Scholar · Zbl 0923.34056 · doi:10.4171/RMI/240
[30] [30] Meyer Y , Sellan F , Taqqu M (1999) Wavelets, generalized white noise and fractional integration: The synthesis of fractional Brownian motion. J. Fourier Anal. Appl. 5(5):465-494.Crossref, Google Scholar · Zbl 0948.60026 · doi:10.1007/BF01261639
[31] [31] Norros I (1995) On the use of fractional Brownian motion in the theory of connectionless networks. IEEE J. Selected Areas Comm. 13(6):953-962.Crossref, Google Scholar · doi:10.1109/49.400651
[32] [32] Nualart D (2006) Fractional Brownian motion: Stochastic calculus and applications. International Congress of Mathematicians. vol. 3, pp. 1541-1562.Google Scholar · Zbl 1102.60033
[33] [33] Nualart D , Tindel S (2011) A construction of the rough path above fractional Brownian motion using Volterra′s representation. The Annals of Probability. 39(3):1061-1096.Crossref, Google Scholar · Zbl 1219.60041 · doi:10.1214/10-AOP578
[34] [34] Pollock M , Johansen A , Roberts G (2016) On the exact and ε-strong simulation of (jump) diffusions. Bernoulli 22(2):794-856.Crossref, Google Scholar · Zbl 1343.60099 · doi:10.3150/14-BEJ676
[35] [35] Rao CR (1973) Linear Statistical Inference and Its Applications, 2nd ed. Wiley, New York.Google Scholar
[36] [36] Rhee CH , Glynn P (2012) A new approach to unbiased estimation for SDE′s. C Laroque, J Himmelspach, R Pasupathy, O Rose, and AM Uhrmacher, eds. Proc. of the Winter Simulation Conf. (IEEE Piacataway, NJ), 201-207.Google Scholar
[37] [37] Sottinen T , Yazigi A (2014) Generalized Gaussian bridges. Stochastic Processes and Their Appl. 124(9):3084-3105.Crossref, Google Scholar · Zbl 1329.60098 · doi:10.1016/j.spa.2014.04.002
[38] [38] Wood AT , Chan G (1994) Simulation of stationary Gaussian processes in [0,1]d . J. of Computational and Graphical Statistics 3(4):409-432.Google Scholar
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.