×

The group of diffeomorphisms of a non-compact manifold is not regular. (English) Zbl 1387.22019

Summary: We show that a group of diffeomorphisms \(\mathcal{D}\) on the open unit interval \(I\), equipped with the topology of uniform convergence on any compact set of the derivatives at any order, is non-regular: the exponential map is not defined for some path of the Lie algebra. This result extends to the group of diffeomorphisms of a finite dimensional, non-compact manifold \(M\).

MSC:

22E65 Infinite-dimensional Lie groups and their Lie algebras: general properties
22E66 Analysis on and representations of infinite-dimensional Lie groups

References:

[1] Omori H., Groups of diffeomorphisms and their subgroups, Trans. Amer. Math. Soc., 1973, 179, 85-122; · Zbl 0269.58005
[2] Omori H., A remark on nonenlargeable Lie algebras, J. Math. Soc. Japan, 1981, 33(4), 707-710; · Zbl 0463.22015
[3] Omori H., Infinite dimensional Lie groups, AMS Translations of Mathematical Monographs, Amer. Math. Soc., Providence, R.I., 1997, 158; · Zbl 0871.58007
[4] Kriegl A., Michor P. W., The convenient setting for global analysis, AMS Math. Surveys and Monographs, AMS, Providence, 1997, 53; · Zbl 0889.58001
[5] Khesin B., Wendt R., Geometry of infinite dimensional groups, Springer, 2008; · Zbl 1160.22001
[6] Magnot J.-P., Difféologie du fibré d’Holonomie en dimension infinie, C. R. Math. Soc. Roy. Can., 2006, 28(4), 121-127;
[7] Watts J., Diffeologies, differentiable spaces and symplectic geometry, University of Toronto, PhD thesis, 2013, arXiv:1208.3634v1;
[8] Frölicher A., Kriegl A., Linear spaces and differentiation theory, Wiley series in Pure and Applied Mathematics, Wiley Interscience, 1988; · Zbl 0657.46034
[9] Magnot J.-P., Ambrose-Singer theorem on diffeological bundles and complete integrability of the KP equation, Int. J. Geom. Meth. Mod. Phys., 2013, 10(9), DOI: 10.1142/S0219887813500436; · Zbl 1278.58001
[10] Hirsch M., Differential topology, Springer, 1997;
[11] Kriegl A., Michor P. W., Rainer A., An exotic zoo of diffeomorphism groups on Rn, Ann. Global Anal. Geom., 2015, 47(2), 179-222; · Zbl 1316.58008
[12] Kolar I., Michor P. W., Slovak J., Natural operations in differential geometry, Springer, 1993; · Zbl 0782.53013
[13] Souriau J.-M., Un algorithme générateur de structures quantiques, Astérisque (hors série), 1985, 341-399; · Zbl 0608.58028
[14] Iglesias-Zemmour P., Diffeology, Mathematical Surveys and Monographs, 2013, 185; · Zbl 1269.53003
[15] Neeb K.-H., Towards a Lie theory of locally convex groups, Japanese J. Math., 2006, 1, 291-468; · Zbl 1161.22012
[16] Christensen D., Sinnamon G., Wu E., The D-topology for diffeological spaces, Pacific J. Math., 2014, 272(1), 87-110; · Zbl 1311.57031
[17] Magnot J.-P., q-deformed Lax equations and their differential geometric background, Lambert Academic Publishing, Saarbrucken, Germany, 2015;
[18] Dugmore D., Ntumba P., On tangent cones of Frölicher spaces, Quaetiones Mathematicae, 2007, 30(1), 67-83; · Zbl 1151.18014
[19] Christensen D., Wu E., Tangent spaces and tangent bundles for diffeological spaces, Cahiers de Topologie et Géométrie Différentielle, 2016, LVII, 3-50; · Zbl 1355.57023
[20] Leslie J., On a diffeological group realization of certain generalized symmetrizable Kac-Moody Lie algebras, J. Lie Theory, 2003, 13, 427-442; · Zbl 1119.17303
[21] Berger M., A panoramic overview of Riemannian geometry, Springer, 2003; · Zbl 1038.53002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.