×

Čech-de Rham bicomplex in diffeology. (English) Zbl 1537.55011

This paper introduces Čech cohomology for diffeological spaces, which are adapted to their specificity. A good approach in diffeology for the Čech cohomology is to be defined as the Hochschild cohomology of a gauge monoid, associated with the specific generating family of round plots. The computation in the case of the irrational torus shows that this Čech cohomology achieves its purpose, even in this extreme case.
The author connects this Čech cohomology with the de Rham cohomology through a double complex as in [A. Weil, Comment. Math. Helv. 26, 119–145 (1952; Zbl 0047.16702)]. This complex together with its associated two filtrations and the spectral sequence is described. Contrarily to the case of smooth manifolds, the spectral sequence does not split in general, containing the obstruction to the de Rham theorem in diffeology. This obstruction is identified with the middle term in the low-degree sequence of the spectral sequence, which gives to it a full-fledged geometric status. The geometric nature of the higher obstructions of the de Rham theorem remains to be challenged.
Editorial remark: As the author states, this is a translation and revision of the unpublished preprint from 1988 [“Une cohomologie de Čech pour les espaces différentiables et sa relation à la cohomologie de De Rham”, Preprint, http://math.huji.ac.il/~piz/documents/UCDCPLEDESRALCDDR.pdf.

MSC:

55N99 Homology and cohomology theories in algebraic topology
58A12 de Rham theory in global analysis
58A40 Differential spaces

Citations:

Zbl 0047.16702
Full Text: DOI

References:

[1] Chen, K-T, Iterated path integrals, Bulletin of the American Mathematical Society, 83, 831-879, 1977 · Zbl 0389.58001 · doi:10.1090/S0002-9904-1977-14320-6
[2] P. Donato, Revêtement et groupe fondamental des espaces différentiels homogènes, Thèse de doctorat d’état, Université de Provence, Marseille, 1984.
[3] Donato, P.; Iglesias, P., Exemple de groupes différentiels: flots irrationnels sur le tore, Comptes Rendus des Séances de l’Académie des Sciences. Série I. Mathématique, 301, 127-130, 1985 · Zbl 0596.58010
[4] Godement, R., Topologie algébrique et théorie des faisceaux, 1964, Paris: Hermann, Paris · Zbl 0080.16201
[5] S. Gürer, Topologie algébrique des espaces difféologiques, PhD Thèse, Université Lille 1, 2014.
[6] Hochschild, G., On the Cohomology Groups of an Associative Algebra, Annals of Mathematics, 46, 58-67, 1945 · Zbl 0063.02029 · doi:10.2307/1969145
[7] Iglesias, P., Fibrés difféologiques et homotopie, 1985, Marseille: Université de Provence, Marseille
[8] Iglesias, P., Difféologie d’espace singulier et petits diviseurs, Comptes Rendus des Séances de l’Académie des Sciences. Série I. Mathématique, 302, 519-522, 1986 · Zbl 0607.57018
[9] P. Iglesias, Bi-complexe cohomologique des espaces différentiables, http://math.huji.ac.il/ piz/documents/BCCED.pdf; a revision of Une cohomologie de Čech pour les espaces différentiables et sa relation à la cohomologie de De Rham, Preprint CPT -Marseille CNRS CPT-88/P.2193, http://math.huji.ac.il/ piz/documents/UCDCPLEDESRALCDDR.pdf.
[10] Iglesias-Zemmour, P., Diffeology, 2013, Providence, RI: American Mathematical Society, Providence, RI · Zbl 1269.53003 · doi:10.1090/surv/185
[11] Kuribayashi, K., Simplicial cochain algebras for diffeological spaces, Indagationes Mathematicae, 31, 934-967, 2020 · Zbl 1473.58002 · doi:10.1016/j.indag.2020.08.002
[12] MacLane, S., Homology, 1967, New York-Heidelberg-Berlin: Springer, New York-Heidelberg-Berlin · Zbl 0176.38501
[13] Souriau, J-M, Groupes différentiels, Differential Geometrical Methods in Mathematical Physics, 91-128, 1980, Berlin: Springer, Berlin · Zbl 0501.58010 · doi:10.1007/BFb0089728
[14] Souriau, J-M, Groupes différentiels de physique mathématique, South Rhone Seminar on Geometry. II, 73-119, 1984, Paris: Hermann, Paris · Zbl 0541.58002
[15] Souriau, J-M, Un algorithme générateur de structures quantiques, Astérisque, S131, 341-399, 1985 · Zbl 0608.58028
[16] Weil, A., Sur les théorèmes de De Rham, Commentarii Mathematici Helvetici, 26, 119-145, 1952 · Zbl 0047.16702 · doi:10.1007/BF02564296
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.