×

The Cauchy problem of the Kadomtsev-Petviashvili hierarchy with arbitrary coefficient algebra. (English) Zbl 1420.37084

Summary: M. Mulase solved the Cauchy problem of the Kadomtsev-Petviashvili (KP) hierarchy in an algebraic category in [Invent. Math. 92, No. 1, 1–46 (1988; Zbl 0666.35074)], making use of a delicate factorization of an infinite-dimensional group of formal pseudodifferential operators of infinite order. We prove Mulase’s factorization theorem in a smooth category in the setting of formal pseudo-differential operators with coefficients in a (non-commutative) algebra equipped with a valuation. As an application, we solve the initial value problem for the KP hierarchy using \(r\)-matrix theory.

MSC:

37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
35Q53 KdV equations (Korteweg-de Vries equations)

Citations:

Zbl 0666.35074

References:

[1] Andersen, J. E.; Borot, G.; Chekhov, L. O.; Orantin, N., The ABCD of topological recursion · Zbl 1541.81089
[2] Blohmann, C.; Barbosa Fernandes, M. C.; Weinstein, A., Groupoid symmetry and constraints in General Relativity, Commun. Contemp. Math., 15, 1250061 (2013) · Zbl 1261.83006
[3] Bosch, S.; Güntzer, U.; Remmert, R., Non-Archimedean Analysis (1984), Springer-Verlag · Zbl 0539.14017
[4] Chen, K. T., Iterated Path Integrals, Bulletin AMS, 83, 831-879 (1977) · Zbl 0389.58001 · doi:10.1090/S0002-9904-1977-14320-6
[5] Berezin, F. A.; Perelomov, A. M., Group-theoretical interpretation of the Korteweg-de Vries type equations, Comm. Math. Phys., 74, 12-140 (1980) · Zbl 0429.35062 · doi:10.1007/BF01197755
[6] Demidov, E. E., On the Kadomtsev-Petviashvili hierarchy with a noncommutative timespace, Funct. Anal. Appl., 29, 131-133 (1995) · Zbl 0853.35106 · doi:10.1007/BF01080014
[7] Demidov, E. E., Noncommutative deformation of the Kadomtsev-Petviashvili hierarchy, J. Math. Sci. (New York), 88, 520-536 (1998) · Zbl 0921.35146
[8] Dickey, L. A., Soliton equations and Hamiltonian systems, second edition (2003), World Scientific · Zbl 1140.35012
[9] Eslami Rad, A.; Reyes, E. G., The Kadomtsev-Petviashvili hierarchy and the Mulase factorization of formal Lie groups, Geometric Mechanics, 5, 345-364 (2013) · Zbl 1330.37061 · doi:10.3934/jgm.2013.5.345
[10] Iglesias-Zemmour, P., Diffeology, AMS Mathematical Monographs, 185 (2013) · Zbl 1269.53003
[11] Khesin, B. A.; Wendt, R., The geometry of infinite-dimensional groups (2009), Springer-Verlag · Zbl 1160.22001
[12] Magnot, J.-P., Ambrose-Singer theorem on diffeological bundles and complete integrability of KP equations, Int. J. Geom. Meth. Mod. Phys., 10, 9 (2013) · Zbl 1278.58001
[13] Magnot, J.-P.; Reyes, E. G., Well-posedness of the Kadomtsev-Petviashvili hierarchy, Mulase factorization, and Frölicher Lie groups · Zbl 1447.35287
[14] Mulase, M., Complete integrability of the Kadomtsev-Petvishvili equation, Advances in Math., 54, 57-66 (1984) · Zbl 0587.35083 · doi:10.1016/0001-8708(84)90036-7
[15] Mulase, M., Solvability of the super KP equation and a generalization of the Birkhoff decomposition, Invent. Math., 92, 1-46 (1988) · Zbl 0666.35074 · doi:10.1007/BF01393991
[16] Perelomov, A. M., Integrable systems of classical mechanics and Lie algebras (1990), Birkhäuser Verlag · Zbl 0717.70003
[17] Pressley, A.; Segal, G. B., Loop groups (1986), Oxford University Press · Zbl 0618.22011
[18] Reyman, A. G.; Semenov-Tian-Shansky, M. A., Reduction of Hamiltonian Systems, Affine Lie Algebras and Lax Equations II, Invent. Math., 63, 423-432 (1981) · Zbl 0442.58016 · doi:10.1007/BF01389063
[19] Sakakibara, M., Factorization methods for noncommutative KP and Toda hierarchy, J. Phys. A: Math. Gen., 37, L599-L604 (2004) · Zbl 1064.37054 · doi:10.1088/0305-4470/37/45/L02
[20] Schikhof, W. H., Ultrametric calculus. An introduction to p-adic analysis (1984), Cambridge · Zbl 0553.26006
[21] Souriau, J.-M., Un algorithme générateur de structures quantiques, Astérisque · Zbl 0608.58028
[22] Strachan, I. A.B.; Zuo, D., Integrability of the Frobenius algebra-valued Kadomtsev-Petviashvili hierarchy, J. Math. Phys., 56, 113509 (2015) · Zbl 1327.35344 · doi:10.1063/1.4935936
[23] Takasaki, K., A New Approach to the Self-Dual Yang-Mills Equations, Commun. Math. Phys., 94, 35-59 (1984) · Zbl 0552.58036 · doi:10.1007/BF01212348
[24] Takasaki, K., Nonabelian KP hierarchy with Moyal algebraic coefficients, J. Geom. Phys., 14, 332-364 (1994) · Zbl 0821.35124 · doi:10.1016/0393-0440(94)90040-X
[25] Tanré, D., Homotopie Rationnelle: Modèles de Chen (1983), Quillen, Sullivan, LNM 1025, Springer-Verlag · Zbl 0539.55001
[26] Watts, J., Diffeologies, differentiable spaces and symplectic geometry
[27] Zhang, H., Hamiltonian Structures and Integrability of Frobenius Algebra-Valued (n, m)\(^{th} \) KdV Hierarchy, J. Nonlinear Math. Phys., 24, 315-327 (2017) · Zbl 1420.37095 · doi:10.1080/14029251.2017.1341695
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.