×

Frölicher structures, diffieties, and a formal KP hierarchy. (English) Zbl 1530.35012

Krasil’shchik, I. S. (ed.) et al., The diverse world of PDEs. Algebraic and cohomological aspects. Alexandre Vinogradov memorial conference. Diffieties, cohomological physics, and other animals, Independent University of Moscow and Moscow State University, Moscow, Russia, December 13–17, 2021. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 789, 183-196 (2023).
Summary: We propose a definition of a diffiety based on the theory of Frölicher structures. As a consequence, we obtain a natural Vinogradov sequence and, under the assumption of the existence of a suitable derivation on a given diffiety, we can form on it a Kadomtsev-Petviashvili hierarchy which is well-posed.
For the entire collection see [Zbl 1519.35008].

MSC:

35A30 Geometric theory, characteristics, transformations in context of PDEs
54A10 Several topologies on one set (change of topology, comparison of topologies, lattices of topologies)
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
58A20 Jets in global analysis
58A40 Differential spaces

References:

[1] Anderson, Ian M., Mathematical aspects of classical field theory. Introduction to the variational bicomplex, Contemp. Math., 51-73 (1991), Amer. Math. Soc., Providence, RI · Zbl 0772.58013 · doi:10.1090/conm/132/1188434
[2] Ntumba, P. P., On the way to Fr\"{o}licher Lie groups, Quaest. Math., 73-93 (2005) · Zbl 1083.18006 · doi:10.2989/16073600509486116
[3] Batubenge, A., Topologies and smooth maps on initial and final objects in the category of Fr\"{o}licher spaces, Demonstratio Math., 641-655 (2009) · Zbl 1190.54002
[4] Batubenge, T. Augustin, A survey on Fr\"{o}licher spaces, Quaest. Math., 869-884 (2015) · Zbl 1448.58002 · doi:10.2989/16073606.2014.981740
[5] Batubenge, T. A., Finsler metric topology coincides with Fr\"{o}licher topology, Balkan J. Geom. Appl., 1-12 (2017) · Zbl 1383.54009
[6] Bourbaki, Nicolas, Algebra I. Chapters 1-3, Elements of Mathematics (Berlin), xxiv+709 pp. (1998), Springer-Verlag, Berlin · Zbl 0904.00001
[7] Canarutto, Daniel, Fr\"{o}licher-smooth geometries, quantum jet bundles and BRST symmetry, J. Geom. Phys., 113-128 (2015) · Zbl 1305.81109 · doi:10.1016/j.geomphys.2014.11.013
[8] Daniel Canarutto, Gauge Field Theory in Natural Geometric Language: A revisitation of mathematical notions of quantum physics, Oxford University Press (2020). · Zbl 1508.81005
[9] Chen, Kuo Tsai, Iterated path integrals, Bull. Amer. Math. Soc., 831-879 (1977) · Zbl 0389.58001 · doi:10.1090/S0002-9904-1977-14320-6
[10] Cherenack, Paul, Applications of Fr\"{o}licher spaces to cosmology, Ann. Univ. Sci. Budapest. E\"{o}tv\"{o}s Sect. Math., 63-91 (1999) (1998) · Zbl 0956.58001
[11] Christensen, J. Daniel, Tangent spaces and tangent bundles for diffeological spaces, Cah. Topol. G\'{e}om. Diff\'{e}r. Cat\'{e}g., 3-50 (2016) · Zbl 1355.57023
[12] Demidov, E. E., On the Kadomtsev-Petviashvili hierarchy with a noncommutative timespace, Funct. Anal. Appl.. Funktsional. Anal. i Prilozhen., 73-76 (1995) · Zbl 0853.35106 · doi:10.1007/BF01080014
[13] Demidov, E. E., Noncommutative deformation of the Kadomtsev-Petviashvili hierarchy, J. Math. Sci. (New York), 520-536 (1998) · Zbl 0921.35146 · doi:10.1007/BF02365314
[14] Dugmore, B., On tangent cones of Fr\"{o}licher spaces, Quaest. Math., 67-83 (2007) · Zbl 1151.18014 · doi:10.2989/160736007780205747
[15] Dickey, L. A., Soliton equations and Hamiltonian systems, Advanced Series in Mathematical Physics, xii+408 pp. (2003), World Scientific Publishing Co., Inc., River Edge, NJ · Zbl 1140.35012 · doi:10.1142/5108
[16] Eslami Rad, Anahita, The Kadomtsev-Petviashvili hierarchy and the Mulase factorization of formal Lie groups, J. Geom. Mech., 345-364 (2013) · Zbl 1330.37061 · doi:10.3934/jgm.2013.5.345
[17] Eslami Rad, Anahita, The Cauchy problem of the Kadomtsev-Petviashvili hierarchy with arbitrary coefficient algebra, J. Nonlinear Math. Phys., 103-120 (2017) · Zbl 1420.37084 · doi:10.1080/14029251.2017.1418057
[18] Fr\"{o}licher, Alfred, Category theory. Smooth structures, Lecture Notes in Math., 69-81 (1981), Springer, Berlin-New York · Zbl 0498.58004
[19] Fr\"{o}licher, Alfred, Categories in continuum physics. Cartesian closed categories and analysis of smooth maps, Lecture Notes in Math., 43-51 (1982), Springer, Berlin · Zbl 0601.58015 · doi:10.1007/BFb0076933
[20] Fr\"{o}licher, Alfred, Linear spaces and differentiation theory, Pure and Applied Mathematics (New York), xvi+246 pp. (1988), John Wiley & Sons, Ltd., Chichester · Zbl 0657.46034
[21] N. Goldammer, K. Welker, Optimization in diffeological spaces. Proc. Appl. Math. Mech. 21 no S1 e202100260 (2021).
[22] N. Goldammer, J.-P. Magnot, K. Welker, On diffeologies in infinite dimensional geometry and shape analysis (preliminary title). In preparation.
[23] Iglesias-Zemmour, Patrick, Diffeology, Mathematical Surveys and Monographs, xxiv+439 pp. (2013), American Mathematical Society, Providence, RI · Zbl 1269.53003 · doi:10.1090/surv/185
[24] Krasil\cprime shchik, I. S., Nonlocal trends in the geometry of differential equations: symmetries, conservation laws, and B\"{a}cklund transformations, Acta Appl. Math., 161-209 (1989) · Zbl 0692.35003 · doi:10.1007/BF00131935
[25] Bocharov, A. V., Symmetries and conservation laws for differential equations of mathematical physics, Translations of Mathematical Monographs, xiv+333 pp. (1999), American Mathematical Society, Providence, RI · Zbl 0911.00032 · doi:10.1090/mmono/182
[26] Kriegl, Andreas, The convenient setting of global analysis, Mathematical Surveys and Monographs, x+618 pp. (1997), American Mathematical Society, Providence, RI · Zbl 0889.58001 · doi:10.1090/surv/053
[27] Laubinger, Martin, A Lie algebra for Fr\"{o}licher groups, Indag. Math. (N.S.), 156-174 (2011) · Zbl 1473.22017 · doi:10.1016/j.indag.2011.04.001
[28] Leslie, Joshua, On a diffeological group realization of certain generalized symmetrizable Kac-Moody Lie algebras, J. Lie Theory, 427-442 (2003) · Zbl 1119.17303
[29] Magnot, Jean-Pierre, Diff\'{e}ologie du fibr\'{e} d’holonomie d’une connexion en dimension infinie, C. R. Math. Acad. Sci. Soc. R. Can., 121-128 (2006)
[30] Magnot, Jean-Pierre, Ambrose-Singer theorem on diffeological bundles and complete integrability of the KP equation, Int. J. Geom. Methods Mod. Phys., 1350043, 31 pp. (2013) · Zbl 1278.58001 · doi:10.1142/S0219887813500436
[31] Magnot, Jean-Pierre, Remarks on the geometry and the topology of the loop spaces \(H^s(S^1,N)\), for \(s\le 1/2\), Int. J. Maps Math., 14-37 (2019)
[32] Magnot, Jean-Pierre, Well-posedness of the Kadomtsev-Petviashvili hierarchy, Mulase factorization, and Fr\"{o}licher Lie groups, Ann. Henri Poincar\'{e}, 1893-1945 (2020) · Zbl 1447.35287 · doi:10.1007/s00023-020-00896-3
[33] Magnot, Jean-Pierre, On the differential geometry of numerical schemes and weak solutions of functional equations, Nonlinearity, 6835-6867 (2020) · Zbl 1454.39031 · doi:10.1088/1361-6544/abaa9f
[34] Magnot, Jean-Pierre, On \((t_2, t_3)\)-Zakharov-Shabat equations of generalized Kadomtsev-Petviashvili hierarchies, J. Math. Phys., Paper No. 093501, 11 pp. (2022) · Zbl 1509.37090 · doi:10.1063/5.0093238
[35] Jean-Pierre Magnot, Enrique G. Reyes, and Vladimir Rubtsov, Infinite order structures on differential equations. In preparation, 2022. · Zbl 1509.37090
[36] Miwa, T., Solitons, Cambridge Tracts in Mathematics, x+108 pp. (2000), Cambridge University Press, Cambridge · Zbl 0986.37068
[37] Mulase, Motohico, Complete integrability of the Kadomtsev-Petviashvili equation, Adv. in Math., 57-66 (1984) · Zbl 0587.35083 · doi:10.1016/0001-8708(84)90036-7
[38] Mulase, Motohico, Cohomological structure in soliton equations and Jacobian varieties, J. Differential Geom., 403-430 (1984) · Zbl 0559.35076
[39] Mulase, Motohico, Solvability of the super KP equation and a generalization of the Birkhoff decomposition, Invent. Math., 1-46 (1988) · Zbl 0666.35074 · doi:10.1007/BF01393991
[40] Ntumba, Patrice P., Sikorski and Fr\"{o}licher CW-complexes compared, Demonstratio Math., 207-221 (2005) · Zbl 1084.58002
[41] J.-M. Souriau, Un algorithme g\'en\'erateur de structures quantiques Ast\'erisque (hors s\'erie), 341-399, (1985). · Zbl 0608.58028
[42] Stacey, Andrew, Comparative smootheology, Theory Appl. Categ., No. 4, 64-117 (2011) · Zbl 1220.18013
[43] A. M. Vinogradov, The \(\mathcal C-\) spectral sequence, Lagrangian formalism and conservation laws J. Math. Anal. Appl. 100 (1984), 1-129. · Zbl 0548.58015
[44] Vinogradov, A. M., Local symmetries and conservation laws, Acta Appl. Math., 21-78 (1984) · Zbl 0534.58005 · doi:10.1007/BF01405491
[45] Vinogradov, A. M., Cohomological analysis of partial differential equations and secondary calculus, Translations of Mathematical Monographs, xvi+247 pp. (2001), American Mathematical Society, Providence, RI · Zbl 1152.58308 · doi:10.1090/mmono/204
[46] Vinogradov, Alexandre, Sophus Lie and Felix Klein: the Erlangen program and its impact in mathematics and physics. What are symmetries of PDEs and what are PDEs themselves?, IRMA Lect. Math. Theor. Phys., 137-190 (2015), Eur. Math. Soc., Z\"{u}rich · Zbl 1354.01005
[47] Watts, Jordan, Diffeologies, Differential Spaces, and Symplectic Geometry, 146 pp. (2012), ProQuest LLC, Ann Arbor, MI
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.