×

On diffeologies for power sets and measures. (English) Zbl 1543.58018

This paper aims to provide a suitable framework for differentiation on the power set of a space, in which the flavor of rigor and adeptness is comforting enough to enable to think about a general theory adapted to applied frameworks. For this purpose, the authors work in the framework of diffeology [P. Iglesias-Zemmour, Diffeology. Providence, RI: American Mathematical Society (AMS) (2013; Zbl 1269.53003)]. Diffeological spaces form a category for differential calculus and differential geometry, an interesting subcategory of which Frölicher spaces [A. Frölicher and A. Kriegl, Linear spaces and differentiation theory. Chichester (UK) etc.: Wiley (1988; Zbl 0657.46034); A. Kriegl and P. W. Michor, The convenient setting of global analysis. Providence, RI: American Mathematical Society (1997; Zbl 0889.58001)] form.
The synopsis of the paper goes as follows.
(1)
§2 recalls basics on diffeologies and Frölicher spaces.
(2)
§3–§5 provide and study in detail samples of diffeologies on power sets with desirable properties. There are three refinements of the power set diffeology in [P. Iglesias-Zemmour, Diffeology. Providence, RI: American Mathematical Society (AMS) (2013; Zbl 1269.53003)] \[ \text{Strong diffeology}\hookrightarrow\text{Union diffeology}\hookrightarrow \text{Weak diffeology} \] Having diffeological structures on power sets, one can easily treat smooth set-valued maps as usual smooth maps in the diffeological setting.
(3)
§6 describes so-called projectable diffeologies on power sets, developed in the same spirit as the \(Diff\)-diffeology [J.-P. Magnot, Nonlinearity 33, No. 12, 6835–6867 (2020; Zbl 1454.39031)], for which we have \[ \text{Locally projectable diffeology}\hookrightarrow\text{Union diffeology} \]
(4)
§7.1 establishes the existence of diffeologies on the power set \(\mathfrak{B}\left( X\right) \) for which the Boolean operations are smooth. §7.2 and §7.3 analyze how diffeologies on a Borel algebra may encode differentiabiligy or smoothness of measures in it. §7.4 defines a diffeology on the space of measures.
(5)
§8 and §9 are concerned with a possible framework for set-valued maps, showing how Hadamard derivatives of functionals on shape analysis fit with a directional derivative of the globally projectible diffeology.

MSC:

58-XX Global analysis, analysis on manifolds
28B20 Set-valued set functions and measures; integration of set-valued functions; measurable selections
47H04 Set-valued operators

References:

[1] Ahmadi, A.: Submersions, immersions, and étale maps in diffeology. arXiv:2203.05994. Preprint
[2] Ahmadi, A.; Dehghan Nezhad, A.; Davvaz, B., Hypergroups and polygroups in diffeology, Commun. Algebra, 48, 6, 2683-2698 (2020) · Zbl 1448.20060 · doi:10.1080/00927872.2020.1722822
[3] Baez, J.; Hoffnung, A., Convenient categories of smooth spaces, Trans. Am. Math. Soc., 363, 5789-5825 (2011) · Zbl 1237.58006 · doi:10.1090/S0002-9947-2011-05107-X
[4] Bauer, C.; Harms, P.; Michor, P. W., Sobolev metrics on shape space of surfaces, J. Geom. Mech., 3, 4, 389-438 (2011) · Zbl 1262.58004 · doi:10.3934/jgm.2011.3.389
[5] Bogachev, V. I., Differentiable Measures and the Malliavin Calculus (2010), Providence: Am. Math. Soc., Providence · Zbl 1247.28001 · doi:10.1090/surv/164
[6] Christensen, J. D.; Wu, E., Tangent spaces and tangent bundles for diffeological spaces, Cah. Topol. Géom. Différ. Catég., LVII, 3-50 (2016) · Zbl 1355.57023
[7] Christensen, J. D.; Wu, E., Exterior bundles in diffeology, Isr. J. Math. (2022) · Zbl 1512.58002 · doi:10.1007/s11856-022-2372-9
[8] Cootes, T. F.; Taylor, C. J.; Cooper, D. H.; Graham, J., Active shape models-their training and applications, Comput. Vis. Image Underst., 61, 1, 38-59 (1995) · doi:10.1006/cviu.1995.1004
[9] Dehghan Nezhad, A.; Ahmadi, A., A novel approach to sheaves on diffeological spaces, Topol. Appl., 263, 141-153 (2019) · Zbl 1420.18029 · doi:10.1016/j.topol.2019.05.006
[10] Delfour, M. C.; Zolésio, J.-P., Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization (2001), Philadelphia: SIAM, Philadelphia · Zbl 1002.49029
[11] Donato, P., Iglesias-Zemmour, P.: Embedding a diffeological space into its powerset. Available at http://math.huji.ac.il/ piz/documents/DBlog-Rmk-DOTS.pdf · Zbl 1496.53081
[12] Droske, M.; Rumpf, M., Multiscale joint segmentation and registration of image morphology, IEEE Trans. Pattern Anal. Mach. Intell., 29, 12, 2189-2194 (2007) · doi:10.1109/TPAMI.2007.1120
[13] Frölicher, A.; Kriegl, A., Linear Spaces and Differentiation Theory (1988), New York: Wiley-Interscience, New York · Zbl 0657.46034
[14] Fuchs, M.; Jürder, B.; Scherzer, O.; Yang, H., Shape metrics on elastic deformations, J. Math. Imaging Vis., 35, 1, 86-102 (2009) · Zbl 1490.68248 · doi:10.1007/s10851-009-0156-z
[15] Gangl, P.; Laurain, A.; Meftahi, H.; Strum, K., Shape optimization of an electric motor subject to nonlinear magnetostatics, SIAM J. Sci. Comput., 35, 6, B1002-B1025 (2015) · Zbl 1330.49042 · doi:10.1137/15100477X
[16] Goldammer, N., Welker, K.: Towards optimization techniques on diffeological spaces by generalizing Riemannian concepts. arXiv:2009.04262. Preprint
[17] Goldammer, N., Magnot, J.-P., Welker, K.: On diffeologies from infinite dimensional geometry to PDE constrained optimization. arXiv:2302.07838. Preprint
[18] Hintermüller, M.; Laurain, L., Optimal shape design subject to elliptic variational inequalities, SIAM J. Control Optim., 49, 3, 1015-1047 (2011) · Zbl 1228.49045 · doi:10.1137/080745134
[19] Hintermüller, M.; Ring, W., A second order shape optimization approach for image segmentation, SIAM J. Appl. Math., 63, 2, 442-467 (2004) · Zbl 1073.68095 · doi:10.1137/S0036139902403901
[20] Iglesias-Zemmour, P., Diffeology (2013), Providence: Am. Math. Soc., Providence · Zbl 1269.53003
[21] Kendall, D. G., Shape manifolds, procrustean metrics, and complex projective spaces, Bull. Lond. Math. Soc., 16, 2, 81-121 (1984) · Zbl 0579.62100 · doi:10.1112/blms/16.2.81
[22] Kilian, M.; Mitra, N. J.; Pottmann, H., Geometric modelling in shape space, ACM Trans. Graph., 26, 64, 1-8 (2007)
[23] Kriegl, A.; Michor, P. W., The Convenient Setting for Global Analysis (2000), Providence: Am. Math. Soc., Providence · Zbl 0889.58001
[24] Leslie, J., On a diffeological group realization of certain generalized symmetrizable Kac-Moody Lie algebras, J. Lie Theory, 13, 427-442 (2003) · Zbl 1119.17303
[25] Ling, H.; Jacobs, D. W., Shape classification using the inner distance, IEEE Trans. Pattern Anal. Mach. Intell., 29, 2, 286-299 (2007) · doi:10.1109/TPAMI.2007.41
[26] Magnot, J.-P., Difféologie sur le fibré d’holonomie d’une connexion en dimension infinie, C. R. Math. Acad. Sci. Soc. R. Can., 28, 4, 121-127 (2006)
[27] Magnot, J.-P., Ambrose-Singer theorem on diffeological bundles and complete integrability of the KP equation, Int. J. Geom. Methods Mod. Phys., 10, 9 (2013) · Zbl 1278.58001 · doi:10.1142/S0219887813500436
[28] Magnot, J.-P., On the differential geometry of numerical schemes and weak solutions of functional equations, Nonlinearity, 33, 12, 6835-6867 (2020) · Zbl 1454.39031 · doi:10.1088/1361-6544/abaa9f
[29] Marsden, J. E.; Hugues, T. T.H., Mathematical Foundations of Elasticity (1993), New York: Dover, New York
[30] Michael, E., Continuous selections. I, Ann. Math. (2), 63, 2, 361-382 (1956) · Zbl 0071.15902 · doi:10.2307/1969615
[31] Michor, P.; Mumford, D., Vanishing geodesic distance on spaces of submanifolds, Doc. Math., 10, 217-245 (2005) · Zbl 1083.58010 · doi:10.4171/dm/187
[32] Michor, P.; Mumford, D., An overview of Riemannian metrics on spaces of curves using the Hamiltonian approach, Appl. Comput. Harmon. Anal., 23, 1, 74-113 (2007) · Zbl 1116.58007 · doi:10.1016/j.acha.2006.07.004
[33] Mio, W.; Srivastava, A.; Joshi, S., On shape of plane elastic curves, Int. J. Comput. Vis., 73, 3, 307-324 (2007) · Zbl 1477.68398 · doi:10.1007/s11263-006-9968-0
[34] Nagel, A.; Schultz, V. H.; Seibenborn, M.; Wittum, G., Scalable shape optimization methods for structured inverse modelling in 3D diffusive processes, Comput. Vis. Sci., 17, 2, 79-88 (2015) · Zbl 1360.65240 · doi:10.1007/s00791-015-0248-9
[35] Olver, P. J., Applications of Lie groups to Differential Equations (1993), Berlin: Springer, Berlin · Zbl 0785.58003 · doi:10.1007/978-1-4612-4350-2
[36] Paganini, A.; Pirelli, A.; Leugering, G., Approximative shape gradients for interface problems, New Trends in Shape Optimization, 217-227 (2015), New York: Springer, New York · Zbl 1329.49096 · doi:10.1007/978-3-319-17563-8_9
[37] Robart, T., Sur l’intégrabilité des sous-algèbres de Lie en dimension infinie, Can. J. Math., 49, 4, 820-839 (1997) · Zbl 0888.22016 · doi:10.4153/CJM-1997-042-7
[38] Schmidt, S.; Ilicx, C.; Schultz, V. H.; Gauger, N. R., Three-dimensional large-scale aerodynamic shape optimization based on shape calculus, AIAA J., 51, 11, 2615-2627 (2013) · doi:10.2514/1.J052245
[39] Sokolowski, J.; Zolésio, J.-P., Introduction to Shape Optimization (1992), New York: Springer, New York · Zbl 0761.73003
[40] Souriau, J. M., Un algorithme générateur de structures quantiques, Astérisque, S131, 341-399 (1985) · Zbl 0608.58028
[41] Stacey, A., Comparative smootheology, Theory Appl. Categ., 25, 4, 64-117 (2011) · Zbl 1220.18013
[42] Stefani, G.; Zecca, P., Properties of convex sets with application to differential theory of multivalued functions, Nonlinear Anal., 2, 5, 583-595 (1978) · Zbl 0384.49027 · doi:10.1016/0362-546X(78)90006-8
[43] Watts, J.: Diffeologies, differentiable spaces and symplectic geometry. PhD thesis, University of Toronto (2012). arXiv:1208.3634
[44] Wirth, B.; Rumpf, M., A nonlinear elasticshape averaging approach, SIAM J. Imaging Sci., 2, 3, 800-833 (2009) · Zbl 1219.49035 · doi:10.1137/080738337
[45] Wirth, B.; Bar, L.; Rumpf, M.; Sapiro, G., A continuum mechanical approach to geodesics in shape space, Int. J. Comput. Vis., 93, 3, 293-318 (2011) · Zbl 1235.68309 · doi:10.1007/s11263-010-0416-9
[46] Zolésio, J.-P., Control of moving domains, shape optimization and variational tube transformations, Int. Ser. Numer. Math., 155, 329-382 (2007) · Zbl 1239.49064 · doi:10.1007/978-3-7643-7721-2_15
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.