×

A noncoprime Shult type theorem. (English) Zbl 0612.20008

Let G be a finite p-solvable group and let V be a faithful KG-module, K a field. Assume that G contains an element x of order \(p^ n\), p a prime, acting fixed point freely on V. Conditions are given assuring that \(x^{p^{n-1}}\in O_{p'p}(G)\). If char(K) does not divide the order of \(O_{p'}(G)\) we state results assuring that \(x^{p^{n-1}}\in O_ p(G)\). These results extend Shult’s theorem.
A new proof of Thompson’s conjecture asserting that a finite p-solvable (resp. solvable) group G admitting an automorphism \(\alpha\) of order \(p^ n\) acting fixed point freely on every \(\alpha\)-invariant p’-section of G has its p-length (resp. Fitting length) bounded by some functions of n is given for p odd. B. Hartley and A. Rae [Bull. Lond. Math. Soc. 5, 197-198 (1973; Zbl 0273.20015)] showed that \(l_ p(G)\leq 2n\) and \(f(G)\leq 2n^ 2+3n\). Here the best possible bounds \(l_ p(G)\leq n+1\) and \(f(G)\leq 2n+1\) are obtained.

MSC:

20D10 Finite solvable groups, theory of formations, Schunck classes, Fitting classes, \(\pi\)-length, ranks
20D60 Arithmetic and combinatorial problems involving abstract finite groups
20D20 Sylow subgroups, Sylow properties, \(\pi\)-groups, \(\pi\)-structure
20D45 Automorphisms of abstract finite groups

Citations:

Zbl 0273.20015

References:

[1] Berger, T.R.: Nilpotent fixed point free automorphism groups of solvable groups. Math. Z.131, 305-312 (1973) · doi:10.1007/BF01174905
[2] Espuelas, A.: The Fitting length of the Hughes subgroup. J. Algebra105, 365-371 (1987) · Zbl 0604.20021 · doi:10.1016/0021-8693(87)90201-8
[3] Espuelas, A.: Generalized fixed point free automorphisms. Arch. Math.47, 211-214 (1986) · Zbl 0605.20015 · doi:10.1007/BF01191995
[4] Gorenstein, D.: Finite groups. New York and London: Harper and Row 1968 · Zbl 0185.05701
[5] Gross, F.: Solvable groups admitting a fixed-point-free automorphism of prime power order. Proc. Am. Math. Soc.17, 1440-1446 (1966) · Zbl 0147.27201 · doi:10.1090/S0002-9939-1966-0207836-0
[6] Hall, P., Higman, G.: On thep-length ofp-soluble groups and reduction theorems for the Burnside problem. Proc. London Math. Soc. (3)6, 1-42 (1956) · Zbl 0073.25503 · doi:10.1112/plms/s3-6.1.1
[7] Hartley, B.: Sylowp-subgroups and localp-solubility. J. Algebra23, 347-369 (1972) · Zbl 0246.20022 · doi:10.1016/0021-8693(72)90136-6
[8] Hartley, B., Rae, A.: Finitep-groups acting onp-soluble groups. Bull. London Math. Soc.5, 197-198 (1973) · Zbl 0273.20015 · doi:10.1112/blms/5.2.197
[9] Huppert, B., Blackburn, N.: Finite groups II. Berlin Heidelberg New York: Springer 1982 · Zbl 0477.20001
[10] Issacs, M.: Characters of solvable and symplectic groups. Am. J. Math.95, 594-635 (1973) · Zbl 0277.20008 · doi:10.2307/2373731
[11] Rae, A.: Sylowp-subgroups of finitep-soluble groups. J. London Math. Soc. (2)7, 117-123 (1973) · Zbl 0273.20016 · doi:10.1112/jlms/s2-7.1.117
[12] Shult, E.: On groups admitting fixed point free abelian operator groups. Illinois J. Math.9, 701-720 (1965) · Zbl 0136.28504
[13] Turull, A.: Supersolvable automorphism groups of solvable groups. Math. Z.183, 47-73 (1983) · doi:10.1007/BF01187215
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.