×

On the dynamics of formation of generic singularities of mean curvature flow. (English) Zbl 1539.53107

In this interesting paper, the formation of generic singularities under mean curvature flow is studied by combining different approaches and results, in particular techniques developed by the author and his collaborators. Thanks to these advanced techniques, detailed information when the initial hypersurfaces are close to cylinders, and the important and fundamental results by T. H. Colding and W. P. Minicozzi II [Ann. Math. (2) 182, No. 1, 221–285 (2015; Zbl 1337.53082)] (which included all the generic blow-ups) are obtained. The cases where the rescaled flow converges to the cylinder \(S^1 \times {\mathbb R}^3\) are studied. Lastly the region controlled in [loc. cit.] to find a finer description of a neighborhood of the singularity is extended.

MSC:

53E10 Flows related to mean curvature
58J47 Propagation of singularities; initial value problems on manifolds

Citations:

Zbl 1337.53082

References:

[1] Altschuler, S.; Angenent, S. B.; Giga, Y., Mean curvature flow through singularities for surfaces of rotation, J. Geom. Anal., 5, 3, 293-358 (1995) · Zbl 0847.58072
[2] Brakke, K. A., The Motion of a Surface by Its Mean Curvature, Mathematical Notes, vol. 20 (1978), Princeton University Press: Princeton University Press Princeton, N.J. · Zbl 0386.53047
[3] Brendle, S.; Huisken, G., Mean curvature flow with surgery of mean convex surfaces in \(\mathbb{R}^3\), Invent. Math., 203, 2, 615-654 (2016) · Zbl 1381.53113
[4] Bricmont, J.; Kupiainen, A., Universality in blow-up for nonlinear heat equations, Nonlinearity, 7, 2, 539-575 (1994) · Zbl 0857.35018
[5] Choi, K.; Haslhofer, R.; Hershkovits, O., Ancient low entropy flows, mean convex neighborhoods, and uniqueness (2018), arXiv preprint
[6] Choi, K.; Haslhofer, R.; Hershkovits, O.; White, B., Ancient asymptotically cylindrical flows and applications (2019), arXiv preprint
[7] Colding, T. H.; Ilmanen, T.; Minicozzi, W. P., Rigidity of generic singularities of mean curvature flow, Publ. Math. Inst. Hautes Études Sci., 121, 363-382 (2015) · Zbl 1331.53098
[8] Colding, T. H.; Minicozzi, W. P., Generic mean curvature flow I: generic singularities, Ann. Math. (2), 175, 2, 755-833 (2012) · Zbl 1239.53084
[9] Colding, T. H.; Minicozzi, W. P., Uniqueness of blowups and Łojasiewicz inequalities, Ann. Math. (2), 182, 1, 221-285 (2015) · Zbl 1337.53082
[10] Dejak, S.; Gang, Z.; Sigal, I. M.; Wang, S., Blow-up in nonlinear heat equations, Adv. Appl. Math., 40, 4, 433-481 (2008) · Zbl 1180.35130
[11] Ecker, K., Regularity Theory for Mean Curvature Flow, Progress in Nonlinear Differential Equations and Their Applications, vol. 57 (2004), Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA · Zbl 1058.53054
[12] Egli, D.; Gang, Z.; Kong, W.; Sigal, I. M., On blowup in nonlinear heat equations
[13] Evans, L. C.; Spruck, J., Motion of level sets by mean curvature. I, J. Differ. Geom., 33, 3, 635-681 (1991) · Zbl 0726.53029
[14] Filippas, S.; Kohn, R. V., Refined asymptotics for the blowup of \(u_t - \operatorname{\Delta} u = u^p\), Commun. Pure Appl. Math., 45, 7, 821-869 (1992) · Zbl 0784.35010
[15] Filippas, S.; Liu, W. X., On the blowup of multidimensional semilinear heat equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 10, 3, 313-344 (1993) · Zbl 0815.35039
[16] Gang, Z., On the mean convexity of a space-and-time neighborhood of generic singularities formed by mean curvature flow (2018), arXiv preprint
[17] Gang, Z.; Knopf, D., Universality in mean curvature flow neckpinches, Duke Math. J., 164, 12, 2341-2406 (2015) · Zbl 1329.53093
[18] Gang, Z.; Knopf, D.; Sigal, I. M., Neckpinch dynamics for asymmetric surfaces evolving by mean curvature flow, Mem. Am. Math. Soc., 253, 1210 (2018), v+78 pp. · Zbl 1440.53106
[19] Gang, Z.; Sigal, I. M., Neck pinching dynamics under mean curvature flow, J. Geom. Anal., 19, 1, 36-80 (2009) · Zbl 1179.53065
[20] Giga, Y.; Kohn, R. V., Asymptotically self-similar blow-up of semilinear heat equations, Commun. Pure Appl. Math., 38, 3, 297-319 (1985) · Zbl 0585.35051
[21] Giga, Y.; Kohn, R. V., Characterizing blowup using similarity variables, Indiana Univ. Math. J., 36, 1, 1-40 (1987) · Zbl 0601.35052
[22] Giga, Y.; Kohn, R. V., Nondegeneracy of blowup for semilinear heat equations, Commun. Pure Appl. Math., 42, 6, 845-884 (1989) · Zbl 0703.35020
[23] Hamilton, R. S., Four-manifolds with positive isotropic curvature, Commun. Anal. Geom., 5, 1, 1-92 (1997) · Zbl 0892.53018
[24] Haslhofer, R.; Kleiner, B., Mean curvature flow of mean convex hypersurfaces, Commun. Pure Appl. Math., 70, 3, 511-546 (2017) · Zbl 1360.53069
[25] Haslhofer, R.; Kleiner, B., Mean curvature flow with surgery, Duke Math. J., 166, 9, 1591-1626 (2017) · Zbl 1370.53046
[26] Herrero, M. A.; Velázquez, J. J.L., Blow-up behaviour of one-dimensional semilinear parabolic equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 10, 2, 131-189 (1993) · Zbl 0813.35007
[27] Huisken, G., Flow by mean curvature of convex surfaces into spheres, J. Differ. Geom., 20, 1, 237-266 (1984) · Zbl 0556.53001
[28] Huisken, G., Asymptotic behavior for singularities of the mean curvature flow, J. Differ. Geom., 31, 1, 285-299 (1990) · Zbl 0694.53005
[29] Huisken, G.; Sinestrari, C., Mean curvature flow with surgeries of two-convex hypersurfaces, Invent. Math., 175, 1, 137-221 (2009) · Zbl 1170.53042
[30] Ilmanen, T., Elliptic regularization and partial regularity for motion by mean curvature, Mem. Am. Math. Soc., 108, 520 (1994), x+90 pp. · Zbl 0798.35066
[31] Merle, F.; Zaag, H., Stability of the blow-up profile for equations of the type \(u_t = \operatorname{\Delta} u + | u |^{p - 1} u\), Duke Math. J., 86, 1, 143-195 (1997) · Zbl 0872.35049
[32] Sesum, N., Rate of convergence of the mean curvature flow, Commun. Pure Appl. Math., 61, 4, 464-485 (2008) · Zbl 1143.53066
[33] White, B., A local regularity theorem for mean curvature flow, Ann. Math. (2), 161, 3, 1487-1519 (2005) · Zbl 1091.53045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.