×

Positive operators on tensor products which are the tensor product of their restrictions. (English) Zbl 0672.47027

Let E, F, \(E_ 1\), \(F_ 1\) be Banach lattices possessing quasi-interior positive elements e, u, \(e_ 1\), \(u_ 1\). Further on, let \(\psi\) : \(E\to {\mathbb{R}}\) be a positive linear functional, \(\delta\) : \(F\to {\mathbb{R}}^ a \)lattice homomorphism, \(S_ 0: E\to E_ 1\) a positive operator, \(T_ 0: F\to F_ 1\) a lattice homomorphism, such that \(\psi (e)=\delta (u)=1\), \(S_ 0(e)=e_ 1\) and \(T_ 0(u)=u_ 1\). We show that \(\psi\) \(\otimes \delta\) is the only positive linear functional on E\({\tilde \otimes}_{\ell}F\) coinciding with \(\psi\) on E and with \(\delta\) on F, resp. that \(S_ 0\otimes T_ 0\) is the only positive operator on E\({\tilde \otimes}_{\ell}F\) which coincides with \(S_ 0\) on E and with \(T_ 0\) on F. The proof uses the Kakutani-Krein theorem and an extreme point argument. A variant of this result for a Banach lattice F with the principal projection property is proved by elementary calculations with components. Some possible applications of the results are indicated. The paper finishes with analogous results for tensor products of states and pure states resp. tensor products of positive operators and pure completely positive operators on \(C^*\)-algebras, as well as with variants of this result for particular involutive Banach algebras.
Reviewer: M.Pannenberg

MSC:

47B65 Positive linear operators and order-bounded operators
46M05 Tensor products in functional analysis
47A80 Tensor products of linear operators
46B42 Banach lattices
Full Text: DOI

References:

[1] C. D.Aliprantis and O.Burkinshaw, Positive operators. Pure Appl. Math.119, New York 1985.
[2] W. B. Arveson, Subalgebras ofC *-algebras. Acta Math.123, 141-224 (1969). · Zbl 0194.15701 · doi:10.1007/BF02392388
[3] K. P. S.Bhaskara Rao and M.Bhaskara Rao, Theory of charges. Pure Appl. Math.109, New York 1983. · Zbl 0516.28001
[4] Y.Dermenjian et J.Saint-Raymond, Produit tensoriel de deux c?nes convexes saillants. Seminaire Choquet, 9e annee,20 (1969/70).
[5] N.Dunford and J. T.Schwartz, Linear Operators Part I. Pure Appl. Math.8, New York 1963. · Zbl 0128.34803
[6] A.Guichardet, Tensor products ofC *-algebras. Aarhus Univ. Lecture Notes Series12, Aarhus 1969.
[7] R. V.Kadison and J. R.Ringrose, Fundamentals of the theory of operator algebras. Part II: Advanced Theory. Pure Appl. Math.100, New York 1986. · Zbl 0601.46054
[8] K. Keimel andW. Roth, A Korovkin type approximation theorem for set-valued functions. Proc. Amer. Math. Soc.104, 819-824 (1988). · Zbl 0693.47032 · doi:10.1090/S0002-9939-1988-0964863-8
[9] M.Pannenberg, Korovkin approximation in algebras of vector-valued functions. Preprint M?nster 1987 (submitted). · Zbl 0576.41014
[10] M.Pannenberg, Topics in Qualitative Korovkin approximation. Confer. Sem. Mat. Univ. Bari226, Bari 1988. · Zbl 0677.46046
[11] H.Render, An order-theoretic approach to involutive algebras. To appear in Studia Math. (3)92. · Zbl 0677.46043
[12] W.Rudin, Functional Analysis. New York 1973. · Zbl 0253.46001
[13] Ch. E. Rickart, General Theory of Banach Algebras. Reprint New York 1974. · Zbl 0275.46045
[14] H. H.Schaefer, Banach lattices and positive operators. Grundlehren Math. Wiss.215, Berlin-Heidelberg-New York 1974. · Zbl 0296.47023
[15] M. Weba, Korovkin systems of stochastic processes. Math. Z.192, 73-80 (1986). · Zbl 0598.60058 · doi:10.1007/BF01162021
[16] A. C. Zaanen, Examples of orthomorphisms. J. Approx. Theory13, 192-204 (1975). · Zbl 0293.47010 · doi:10.1016/0021-9045(75)90052-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.