×

A fractional Gauss-Jacobi quadrature rule for approximating fractional integrals and derivatives. (English) Zbl 1422.65057

Summary: We introduce an efficient algorithm for computing fractional integrals and derivatives and apply it for solving problems of the calculus of variations of fractional order. The proposed approximations are particularly useful for solving fractional boundary value problems. As an application, we solve a special class of fractional Euler-Lagrange equations. The method is based on Hale and Townsend algorithm for finding the roots and weights of the fractional Gauss-Jacobi quadrature rule and the predictor-corrector method introduced by Diethelm for solving fractional differential equations. Illustrative examples show that the given method is more accurate than the one introduced in [G. Pang et al., Comput. Math. Appl. 66, No. 5, 597–607 (2013; Zbl 1350.65019)], which uses the Golub-Welsch algorithm for evaluating fractional directional integrals.

MSC:

65D32 Numerical quadrature and cubature formulas
26A33 Fractional derivatives and integrals
49K05 Optimality conditions for free problems in one independent variable

Citations:

Zbl 1350.65019

References:

[1] Alkahtani, B. S.T., Chua’s circuit model with Atangana-Baleanu derivative with fractional order, Chaos Solitons Fractals, 89, 547-551 (2016) · Zbl 1360.34160
[2] Almeida, R.; Pooseh, S.; Torres, D. F.M., Computational methods in the fractional calculus of variations (2015), Imperial College Press: Imperial College Press London · Zbl 1322.49001
[3] Atangana, A., On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation, Appl Math Comput, 273, 948-956 (2016) · Zbl 1410.35272
[4] Atangana, A.; Baleanu, D., New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model, Therm Sci, 20, 2, 763-769 (2016)
[5] Atangana, A.; Koca, I., Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solitons Fractals, 89, 447-454 (2016) · Zbl 1360.34150
[6] Bogaert, I.; Michiels, B.; Fostier, J., \(O(1)\) Computation of Legendre polynomials and Gauss-Legendre nodes and weights for parallel computing, SIAM J Sci Comput, 34, 3, C83-C101 (2012) · Zbl 1254.65038
[7] Caputo, M., Linear models of dissipation whose \(q\) is almost frequency independent. part II, J Roy Aust Soc, 13, 529-539 (1967)
[8] Caputo, M.; Fabrizio, M., A new definition of fractional derivative without singular kernel, Prog Fract Diff Appl, 1, 2, 73-85 (2015)
[9] Deng, W., Numerical algorithm for the time fractional Fokker-Planck equation, J Comput Phys, 227, 2, 1510-1522 (2007) · Zbl 1388.35095
[10] Diethelm, K.; Ford, N. J.; Freed, A. D.; Luchko, Y., Algorithms for the fractional calculus: a selection of numerical methods, Comput Methods Appl Mech Engrg, 194, 6-8, 743-773 (2005) · Zbl 1119.65352
[11] Diethelm, K.; Freed, A. D., The fracPECE subroutine for the numerical solution of differential equations of fractional order, (Heinzel, S.; Plesser, T., Forschung und wissenschaftliches Rechnen: Beiträge zum Heinz-Billing-Preis (1998), Gesellschaft für wissenschaftliche Datenverarbeitung, Göttingen, 1999), 57-71
[12] Gatteschi, L.; Pittaluga, G., An asymptotic expansion for the zeros of Jacobi polynomials, Mathematical analysis, 70-86 (1985), Teubner-Texte Math., 79, Teubner, Leipzig · Zbl 0598.33009
[13] Glaser, A.; Liu, X.; Rokhlin, V., A fast algorithm for the calculation of the roots of special functions, SIAM J Sci Comput, 29, 4, 1420-1438 (2007) · Zbl 1145.65015
[14] Golub, G.; Welsch, J., Calculation of Gauss quadrature rules (1967), Stanford University, Technical report no. cs, 81
[15] Golub, G. H.; Welsch, J. H., Calculation of Gauss quadrature rules, Math Comp, 23, 221-230 (1969) · Zbl 0179.21901
[16] Hale, N.; Townsend, A., Fast and accurate computation of Gauss-Legendre and Gauss-Jacobi quadrature nodes and weights, SIAM J Sci Comput, 35, 2, A652-A674 (2013) · Zbl 1270.65017
[17] Khosravian-Arab, H.; Torres, D. F.M., Uniform approximation of fractional derivatives and integrals with application to fractional differential equations, Nonlinear Stud, 20, 4, 533-548 (2013) · Zbl 1304.65169
[18] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and applications of fractional differential equations, North-Holland mathematics studies, 204 (2006), Elsevier, Amsterdam · Zbl 1092.45003
[19] Kincaid, D.; Cheney, W., Numerical analysis (1991), Brooks/Cole, Pacific Grove, CA · Zbl 0745.65001
[20] Koekoek, R.; Lesky, P. A.; Swarttouw, R. F., Hypergeometric orthogonal polynomials and their \(q\)-analogues (2010), Springer Monographs in Mathematics, Springer: Springer Monographs in Mathematics, Springer Berlin · Zbl 1200.33012
[21] Li, C.; Chen, A.; Ye, J., Numerical approaches to fractional calculus and fractional ordinary differential equation, J Comput Phys, 230, 9, 3352-3368 (2011) · Zbl 1218.65070
[22] Li, C.; Zeng, F.; Liu, F., Spectral approximations to the fractional integral and derivative, Fract Calc Appl Anal, 15, 3, 383-406 (2012) · Zbl 1276.26016
[23] Malinowska, A. B.; Torres, D. F.M., Introduction to the fractional calculus of variations (2012), Imperial College Press: Imperial College Press London · Zbl 1218.49026
[24] Odibat, Z. M., Computational algorithms for computing the fractional derivatives of functions, Math Comput Simulation, 79, 7, 2013-2020 (2009) · Zbl 1161.65319
[25] Olver, F. W.J.; Lozier, D. W.; Boisvert, R. F.; Clark, C. W., NIST handbook of mathematical functions (2010), U.S. Dept. Commerce: U.S. Dept. Commerce Washington, DC · Zbl 1198.00002
[26] Pang, G.; Chen, W.; Sze, K. Y., Gauss-Jacobi-type quadrature rules for fractional directional integrals, Comput Math Appl, 66, 5, 597-607 (2013) · Zbl 1350.65019
[27] Podlubny, I., Fractional differential equations, Mathematics in Science and Engineering, 198 (1999), Academic Press: Academic Press San Diego, CA · Zbl 0918.34010
[28] Pooseh, S.; Almeida, R.; Torres, D. F.M., Approximation of fractional integrals by means of derivatives, Comput Math Appl, 64, 10, 3090-3100 (2012) · Zbl 1268.41024
[29] Pooseh, S.; Almeida, R.; Torres, D. F.M., Numerical approximations of fractional derivatives with applications, Asian J Control, 15, 3, 698-712 (2013) · Zbl 1327.93165
[30] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical recipes (2007), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1132.65001
[31] Riewe, F., Nonconservative Lagrangian and Hamiltonian mechanics, Phys Rev E (3), 53, 2, 1890-1899 (1996)
[32] Romero, M.; de Madrid, A. P.; Mañoso, C. M.; Vinagre, B. M., IIR Approximations to the fractional differentiator/integrator using Chebyshev polynomials theory, ISA Trans, 52, 4, 461-468 (2013)
[33] Rousseau, C.; Saint-Aubin, Y., Mathematics and technology, Translated from the French by Chris Hamilton, Springer Undergraduate Texts in Mathematics and Technology (2008), Springer: Springer New York · Zbl 1172.00001
[34] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional integrals and derivatives, Translated from the 1987 Russian original (1993), Gordon and Breach: Gordon and Breach Yverdon · Zbl 0818.26003
[35] Shen, J.; Tang, T.; Wang, L.-L., Spectral methods, Springer series in computational mathematics, 41 (2011), Springer: Springer Heidelberg · Zbl 1227.65117
[36] Swarztrauber, P. N., On computing the points and weights for Gauss-Legendre quadrature, SIAM J Sci Comput, 24, 3, 945-954 (2002) · Zbl 1036.65030
[37] Yakimiw, E., Accurate computation of weights in classical Gauss-Christoffel quadrature rules, J Comput Phys, 129, 2, 406-430 (1996) · Zbl 0867.65006
[38] Zhang, S., Existence of solution for a boundary value problem of fractional order, Acta Math Sci Ser B Engl Ed, 26, 2, 220-228 (2006) · Zbl 1106.34010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.