×

Poles near the origin produce lower bounds for coefficients of meromorphic univalent functions. (English) Zbl 1061.30015

Let \(r\), \(0<r<1\), be a fixed number and let \(U_r\) denote the class of functions \(f(z)=z+\sum^\infty_{n=2} a_n(f)z^n\), \(|z|<r\), that are univalent in the unit disc and have a simple pole at \(z=p\), \(|p|=r\). The main objective of this paper is to show that the variability region of \(a_n(f)\), \(f\in U_r\) at least for small values of \(r\), is an annulus.

MSC:

30C50 Coefficient problems for univalent and multivalent functions of one complex variable
Full Text: DOI

References:

[1] F. G. Avkhadiev, Ch. Pommerenke, and K.-J. Wirths, On the coefficients of concave univalent functions, Math. Nachr., · Zbl 1210.30005 · doi:10.1002/mana.200310177
[2] F. G. Avkhadiev and K.-J. Wirths, Convex holes produce lower bounds for coefficients, Complex Variables Theory Appl. 47 (2002), 553–563. · Zbl 1028.30010 · doi:10.1080/02781070290016223
[3] A. Baernstein II and G. Schober, Estimates for inverse coefficients of univalent functions from integral means, Israel J. Math. 36 (1980), 75–82. · Zbl 0441.30020 · doi:10.1007/BF02761231
[4] L. de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), 137–152. · Zbl 0573.30014 · doi:10.1007/BF02392821
[5] C. Carathéodory, Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen, Math. Ann. 64 (1907), 95–115. · JFM 38.0448.01 · doi:10.1007/BF01449883
[6] X. Fang, The distortion theorems and necessary and sufficient conditions of univalent meromorphic functions with \(S(p),\) Acta Math. Sinica 28 (1985), 427–432. · Zbl 0595.30015
[7] W. Fenchel, Bemerkungen über die im Einheitskreis meromorphen schlichten Funktionen, Sitzungsber. Preussischen Akad. Wiss., Phys.-Math. Kl. 23 (1931), 431–436. · Zbl 0002.26903
[8] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monog., 26, Amer. Math. Society, Providence, RI, 1969. · Zbl 0183.07502
[9] A. W. Goodman, Functions typically-real and meromorphic in the unit circle, Trans. Amer. Math. Soc. 81 (1956), 92–105. · Zbl 0072.29302 · doi:10.2307/1992854
[10] ——, Univalent functions, Mariner, Tampa, FL, 1983.
[11] H. Grunsky, Neue Abschätzungen zur konformen Abbildung ein- und mehrfach zusammenhängender Bereiche, Schriftenreihe Math. Inst. und Inst. Angew. Math. Univ. Berlin 1 (1932), 95–140. · Zbl 0005.36204
[12] J. A. Jenkins, On a conjecture of Goodman concerning meromorphic univalent functions, Michigan Math. J. 9 (1962), 25–27. · Zbl 0112.05102 · doi:10.1307/mmj/1028998616
[13] ——, On meromorphic univalent functions, Complex Variables Theory Appl. 7 (1986), 83–87. · Zbl 0605.30025
[14] Y. Komatu, Note on the theory of conformal representation by meromorphic functions I and II, Proc. Japan Acad. 21 (1945 and 1949), 269–277 and 278–284. · Zbl 0060.23701 · doi:10.3792/pja/1195572471
[15] Z. Lewandowski and E. Zlotkiewicz, On the domain of variability of the second coefficient for a class of meromorphic univalent functions, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 21–25. · Zbl 0148.30802
[16] R. J. Libera and A. E. Livingston, Weakly starlike meromorphic univalent functions, Trans. Amer. Math. Soc. 202 (1975), 181–191. · Zbl 0275.30008 · doi:10.2307/1997306
[17] A. E. Livingston, Weakly starlike meromorphic univalent functions II, Proc. Amer. Math. Soc. 62 (1977), 43–45. · Zbl 0363.30007 · doi:10.2307/2041944
[18] ——, Convex meromorphic mappings, Ann. Polon. Math. 59 (1994), 275–291. · Zbl 0811.30010
[19] K. Löwner, Untersuchungen über schlichte konforme Abbildungen des Einheitskreises I, Math. Ann. 89 (1923), 103–121. · JFM 49.0714.01 · doi:10.1007/BF01448091
[20] J. Miller, Convex and starlike meromorphic functions, Proc. Amer. Math. Soc. 80 (1980), 607–613. · Zbl 0451.30008 · doi:10.2307/2043433
[21] Z. Nehari Conformal mapping, McGraw-Hill, New York, 1952. · Zbl 0048.31503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.