×

The stability of linear periodic Hamiltonian systems under non-Hamiltonian perturbations. (English. Russian original) Zbl 0884.58056

J. Appl. Math. Mech. 59, No. 6, 829-836 (1995); translation from Prikl. Mat. Mekh. 59, No. 6, 867-876 (1995).
Summary: A definition of strong stability and strong instability is proposed for a linear periodic Hamiltonian system of differential equations under a given non-Hamiltonian perturbation. Such a system is subject to the action of periodic perturbations: an arbitrary Hamiltonian perturbation and a given non-Hamiltonian one. Sufficient conditions for strong stability and strong instability are established. Using the linear periodic Lagrange equations of the second kind, the effect of gyroscopic forces and specified dissipative and non-conservative perturbing forces on strong stability and strong instability is investigated on the assumption that the critical relations of combined resonances are satisfied.

MSC:

37C75 Stability theory for smooth dynamical systems
Full Text: DOI

References:

[1] Schmidt, G.; Weidenhammer, F., Instabilitäten gedämpfter rheolinearer Schwingungen, Math. Nachr., 23, 4/5, 301-318 (1961) · Zbl 0102.39802
[2] Valeyev, K. G., On the danger of combination resonances, Prikl. Mat. Mekh., 27, 6, 1134-1142 (1963) · Zbl 0139.03704
[3] Schmidt, G., Instabilitätsbereiche bei rheolinearen Schwingungen, Monatsb. Dtsch. Akad. Wiss., Berlin, 9, 6/7, 405-411 (1967) · Zbl 0178.09403
[4] Kirpichnikov, S. N.; Bondarenko, L. A., Strong stability of linear Hamiltonian periodic systems under a given non-Hamiltonian perturbation. The non-resonant case, Vestnik Leningrad. Gos. Univ. Ser. Mat. Mekh., Astron., 3, 15, 45-53 (1985) · Zbl 0588.70017
[5] Kirpichnikov, S. N.; Bondarenko, L. A., Strong stability of linear Hamiltonian periodic systems under a given non-Hamiltonian perturbation. General case, Vestnik Leningrad. Gos. Univ. Ser. Mat., Mekh., Astron., 2, 8, 55-61 (1986) · Zbl 0614.70024
[6] Karapetyan, A. V.; Rumyantsev, V. V., Stability of conservative and dissipative systems, (Advances in Science and Technology. General Mechanics, Vol. 6 (1983), VINITI: VINITI Moscow), 3-128 · Zbl 0596.70024
[7] Merkin, D. P., Introduction to the Theory of the Stability of Motion (1971), Nauka: Nauka Moscow
[8] Kirpichnikov, S. N.; Bondarenko, L. A., The possible onset of parametric resonance when compensating eccentric vibrations of a satellite with a gravitational stabilization system, (Problems in the Mechanics of Controlled Motion. Non-linear Dynamical Systems (1989), Izd. Permsk. Univ), 67-74
[9] Kirpichnikov, S. N.; Bondarenko, L. A., Parametric resonance in the rotational motion of a composite satellite, (Problems in the Mechanics of Controlled Motion. Non-linear Dynamical Systems (1990), Izd. Permsk. Univ), 45-51 · Zbl 0588.70017
[10] Yakubovich, V. A.; Starzhinskii, V. M., Parametric Resonance in Linear Systems (1987), Nauka: Nauka Moscow · Zbl 0623.34003
[11] Yakubovich, V. A.; Starzhinskii, V. M., Linear Differential Equations with Periodic Coefficients and their Applications (1972), Nauka: Nauka Moscow
[12] Rubanovskii, V. N., Stability of the zero solution of systems of ordinary linear differential equations with periodic coefficients, (Advances in Science and Technology. General Mechanics 1969 (1971), VINITI: VINITI Moscow), 85-157
[13] Arnol’d, V. I., Mathematical Methods of Classical Mechanics (1989), Nauka: Nauka Moscow · Zbl 0692.70003
[14] Kirpichnikov, S. N., The structure of differential equations of mechanics reducible to canonical form, Vestnik Leningr. Gos. Univ. Ser. Mat., Mekh., Astron., 4, 19, 92-99 (1973) · Zbl 0271.70016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.