×

A purely elastic instability in Taylor-Couette flow. (English) Zbl 0706.76011

Summary: A non-inertial (zero Taylor number) viscoelastic instability is discovered for Taylor-Couette flow of dilute polymer solutions. A linear analysis of the inertialess flow of an Oldroyd-B fluid (using both approximate Galerkin analysis and numerical solution of the relevant small-gap eigenvalue problem) show the growth of an overstable (oscillating) mode when the Deborah number exceeds \(f(S)\epsilon^{- 1/2}\), where \(\epsilon\) is the ratio of the gap to the inner cylinder radius, and f(S) is a function of the ratio of solvent to polymer contributions to the solution viscosity. Experiments with a solution of 1000 p.p.m. high-molecular-weight polyisobutylene in a viscous solvent show an onset of secondary toroidal cells when the Deborah number De reaches 20, for \(\epsilon\) of 0.14, and a Taylor number of \(10^{-6}\), in excellent agreement with the theoretical value of 21. The critical De was observed to increase as \(\epsilon\) decreases, in agreement with the theory. At low times after onset of the instability, the cells become small in wavelength compared to those that occur in the inertial instability, again in agreement with our linear analysis. For this fluid, a similar instability occurs in cone-and-plate flow, as reported earlier. The driving force for these instabilities is the interaction between a velocity fluctuation and the first normal stress difference in the base state. Instabilities of the kind that we report here are likely to occur in many rotational shearing flows of viscoelastic fluids.

MSC:

76A10 Viscoelastic fluids
76E99 Hydrodynamic stability
76M20 Finite difference methods applied to problems in fluid mechanics
Full Text: DOI

References:

[1] DOI: 10.1002/aic.690150328 · doi:10.1002/aic.690150328
[2] Weissenberg, Nature 159 pp 310– (1947)
[3] DOI: 10.1063/1.1711101 · doi:10.1063/1.1711101
[4] DOI: 10.1137/1008063 · Zbl 0168.14101 · doi:10.1137/1008063
[5] DOI: 10.1017/S0022112065000241 · Zbl 0134.21705 · doi:10.1017/S0022112065000241
[6] DOI: 10.1017/S0022112064000039 · Zbl 0122.19604 · doi:10.1017/S0022112064000039
[7] DOI: 10.1103/RevModPhys.33.239 · Zbl 0103.40804 · doi:10.1103/RevModPhys.33.239
[8] Taylor, Phil. Trans. R. Soc. Lond. 223 pp 289– (1923)
[9] DOI: 10.1002/aic.690180519 · doi:10.1002/aic.690180519
[10] DOI: 10.1016/0377-0257(77)80014-1 · doi:10.1016/0377-0257(77)80014-1
[11] DOI: 10.1016/0377-0257(86)80066-0 · Zbl 0587.76010 · doi:10.1016/0377-0257(86)80066-0
[12] Smith, J. Méc. 11 pp 69– (1972)
[13] DOI: 10.1063/1.1694767 · doi:10.1063/1.1694767
[14] DOI: 10.1016/0377-0257(89)80015-1 · Zbl 0659.76015 · doi:10.1016/0377-0257(89)80015-1
[15] DOI: 10.1017/S0022112066000673 · doi:10.1017/S0022112066000673
[16] DOI: 10.1063/1.866283 · doi:10.1063/1.866283
[17] DOI: 10.1063/1.1761545 · doi:10.1063/1.1761545
[18] DOI: 10.1021/ma00146a021 · doi:10.1021/ma00146a021
[19] DOI: 10.1016/0377-0257(83)80040-8 · doi:10.1016/0377-0257(83)80040-8
[20] DOI: 10.1016/0377-0257(85)80004-5 · Zbl 0554.76009 · doi:10.1016/0377-0257(85)80004-5
[21] DOI: 10.1016/0377-0257(83)80027-5 · Zbl 0567.76013 · doi:10.1016/0377-0257(83)80027-5
[22] Miller, Adv. Appl. Mech. 19 pp 143– (1979)
[23] Magda, Polymer 30 pp 1– (1990)
[24] DOI: 10.1016/0377-0257(88)80014-4 · doi:10.1016/0377-0257(88)80014-4
[25] DOI: 10.1016/0377-0257(87)80038-1 · doi:10.1016/0377-0257(87)80038-1
[26] Lockett, J. Méc. 7 pp 475– (1968)
[27] DOI: 10.1016/0377-0257(80)80008-5 · doi:10.1016/0377-0257(80)80008-5
[28] DOI: 10.1017/S0022112073000029 · Zbl 0262.76002 · doi:10.1017/S0022112073000029
[29] Hayes, Prog. Heat Mass Transfer 5 pp 195– (1972) · doi:10.1016/B978-0-08-016915-6.50019-7
[30] DOI: 10.1017/S0022112068001837 · Zbl 0169.28501 · doi:10.1017/S0022112068001837
[31] DOI: 10.1017/S0022112082001451 · doi:10.1017/S0022112082001451
[32] DOI: 10.1103/PhysRevLett.35.927 · doi:10.1103/PhysRevLett.35.927
[33] DOI: 10.1002/aic.690150327 · doi:10.1002/aic.690150327
[34] Giesekus, Prog. Heat Mass Transfer 5 pp 187– (1972) · doi:10.1016/B978-0-08-016915-6.50018-5
[35] DOI: 10.1007/BF01982435 · Zbl 0208.53704 · doi:10.1007/BF01982435
[36] DOI: 10.1017/S0022112079000963 · doi:10.1017/S0022112079000963
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.