×

The Herzog-Schönheim conjecture for finitely generated groups. (English) Zbl 1468.20055

Summary: Let \(G\) be a group and \(H_1\dots,H_s\) be subgroups of \(G\) of indices \(d_1,\dots,d_s\), respectively. In 1974, Herzog and Schönheim conjectured that if \(\{H_i\alpha_i\}_{i=1}^{i=s}\), \(\alpha_i\in G\), is a coset partition of \(G\), then \(d_1,\dots,d_s\) cannot be distinct. We consider the Herzog-Schönheim conjecture for free groups of finite rank and develop a new combinatorial approach, using covering spaces. We define \(Y\) the space of coset partitions of \(F_n\) and show \(Y\) is a metric space with interesting properties. We give some sufficient conditions on the coset partition that ensure the conjecture is satisfied and moreover has a neighborhood \(U\) in \(Y\) such that all the partitions in \(U\) satisfy also the conjecture.

MSC:

20E05 Free nonabelian groups
20F05 Generators, relations, and presentations of groups
20F10 Word problems, other decision problems, connections with logic and automata (group-theoretic aspects)
20F65 Geometric group theory

References:

[1] Baumslag, G., Topics in Combinatorial Group Theory, (Birkhauser Verlag, Basel, 1993). · Zbl 0797.20001
[2] Berger, M. A. and Felzenbaum, A., Fraenkel, A. S., Improvements to two results concerning systems of residue sets, Ars. Combin.20 (1985) 69-82. · Zbl 0587.05023
[3] Berger, M. A., Felzenbaum, A. and Fraenkel, A. S., The Herzog-Schönheim conjecture for finite nilpotent groups, Canad. Math. Bull.29 (1986) 329-333. · Zbl 0553.20009
[4] Berger, M. A., Felzenbaum, A. and Fraenkel, A. S., Lattice parallelotopes and disjoint covering systems, Discrete Math.65 (1987) 23-44. · Zbl 0623.10003
[5] Berger, M. A., Felzenbaum, A. and Fraenkel, A. S., Remark on the multiplicity of a partition of a group into cosets, Fund. Math.128 (1987) 139-144. · Zbl 0652.20030
[6] Brodie, M. A., Chamberlain, R. F. and Kappe, L. C., Finite coverings by normal subgroups, Proc. Amer. Math. Soc.104 (1988) 669-674. · Zbl 0691.20019
[7] W. Dicks, Simplified Mineyev, http://mat.uab.es/dicks/SimplifiedMineyev.pdf.
[8] Dixon, J. D., The probability of generating the symmetric group, Math. Z.110 (1969) 199-205. · Zbl 0176.29901
[9] Epstein, D. B. A.et al., Word Processing in Groups (Jones and Bartlett Publishers, 1992). · Zbl 0764.20017
[10] Erdös, P., On integers of the form \(2^k + p\) and some related problems, Summa Brasil. Math.2 (1950) 113-123. · Zbl 0041.36808
[11] Erdös, P., Problems and Results in Number Theory, , Vol. 1 (Academic Press, London-New York, 1981), pp. 1-13. · Zbl 0459.10002
[12] Friedman, J., Sheaves on graphs, their homological invariants, and a proof of the Hanna Neumann conjecture: With an appendix by Warren Dicks, Mem. Amer. Math. Soc.233 (2015). · Zbl 1327.20025
[13] Geoghegan, R., Topological Methods in Group Theory, , Vol. 243 (Springer-Verlag, Berlin, Heidelberg, New York, 2008). · Zbl 1141.57001
[14] Gersten, S. M., Intersections of finitely generated subgroups of free groups and resolutions of graphs, Invent. Math.71 (1983) 567-591. · Zbl 0521.20014
[15] Ginosar, Y., Tile the group, Elem. Math.73 (2018) 66-73. · Zbl 1440.05240
[16] Ginosar, Y. and Schnabel, O., Prime factorization conditions providing multiplicities in coset partitions of groups, J. Comb. Number Theory3(2) (2011) 75-86. · Zbl 1263.20024
[17] Gross, J. L. and Yellen, J., Graph Theory and its Applications, (Chapman & Hall/CRC, Taylor and Francis Group, 2006). · Zbl 1082.05001
[18] Hatcher, A., Algebraic Topology (Cambridge University Press, 2002). · Zbl 1044.55001
[19] Herzog, M. and Schönheim, J., Research problem no. 9, Canad. Math. Bull.17 (1974) 150.
[20] Ivanov, S. V. and Schupp, P. E., A Remark on Finitely Generated Subgroups of Free Groups, (Birkhauser, 2000), pp. 139-142. · Zbl 0945.20013
[21] Korec, I. and Znám, S̆., On disjoint covering of groups by their cosets, Math. Slovaca27 (1977) 3-7. · Zbl 0389.20031
[22] Lam, T. and Leung, K., On vanishing sums of roots of unity, J. Algebra224(1) (2000) 91-109. · Zbl 1099.11510
[23] Lyndon, R. C. and Schupp, P. E., Combinatorial Group Theory, , Vol. 89 (Springer-Verlag, Berlin, Heidelberg, New York, 1977). · Zbl 0368.20023
[24] Magnus, W., Karrass, A. and Solitar, D., Combinatorial Group Theory (Dover Publications, New York, 1976). · Zbl 0362.20023
[25] Margolis, L. and Schnabel, O., The Herzog-Schönheim Conjecture for Small Groups and Harmonic Subgroups, (Springer-Verlag, 2018). · Zbl 1458.11019
[26] Mineyev, I., Submultiplicativity and the Hanna Neumann Conjecture, Annals of Math.175 (2012) 393-414. · Zbl 1280.20029
[27] Munkres, J., Topology, (Pearson, 2000). · Zbl 0951.54001
[28] Nickolas, P., Intersections of fintely generated free groups, Bull. Austral. Math. Soc.31 (1985) 339-348. · Zbl 0579.20018
[29] S. Nieveen and A. Smith, Covering Spaces and Subgroups of Free Groups, Adviser Dennis Garity (Oregon State University), https://math.oregonstate.edu/\( \sim\) math_reu/proceedings/REU_Proceedings/Proceedings2006/2006NS.pdf.
[30] Newman, M., Roots of unity and covering sets, Math. Ann.191 (1971) 279-282. · Zbl 0203.35205
[31] Novák, B. and Znám, S̆., Disjoint covering systems, Amer. Math. Monthly81 (1974) 42-45. · Zbl 0279.10043
[32] Pin, J. E., On Reversible Automata, , Vol. 583 (Springer, 1992), pp. 401-416.
[33] J. E. Pin, Mathematical foundations of automata theory, https://www.irif.fr/jep/PDF/MPRI/MPRI.pdf.
[34] Porubský, S̆., Natural exactly covering systems of congruences, Czechoslovak Math. J.24 (1974) 598-606. · Zbl 0327.10005
[35] Porubský, S̆., Covering systems and generating functions, Acta Arith.26(3) (1975) 223-231. · Zbl 0268.10044
[36] S̆. Porubský, Results and problems on covering systems of residue classes, Mitteilungen aus dem Math. Sem. Giessen, Heft 150 (Universität Giessen, 1981). · Zbl 0479.10032
[37] Porubský, S̆. and Schönheim, J., Covering systems of Paul Erdös. Past, present and future. Paul Erdös and his mathematics, János Bolyai Math. Soc.11 (2002) 581-627. · Zbl 1055.11007
[38] Robinson, D. J. S., A Course in the Theory of Groups, , Vol. 80 (Springer-Verlag, Berlin, Heidelberg, New York, 1980). · Zbl 0453.20001
[39] Rotman, J. J., An Introduction to Algebraic Topology, , Vol. 119 (Springer-Verlag, Berlin, Heidelberg, New York, 1988). · Zbl 0661.55001
[40] Serre, J. P., Arbres, Amalgames \(S L_2\), , Vol. 46 (Société Mathematique de France, 1977). · Zbl 0369.20013
[41] Sikora, A., Topology on the spaces of orderings of groups, Bull. London Math. Soc.36 (2004) 519-526. · Zbl 1057.06006
[42] Sims, C. C., Computation with Finitely Presented Groups, , Vol. 48 (Cambridge University Press, 1994). · Zbl 0828.20001
[43] Stallings, J. R., Topology of finite graphs, Invent. Math.71 (1983) 551-565. · Zbl 0521.20013
[44] Stillwell, J., Classical Topology and Combinatorial Group Theory, , Vol. 72 (Springer-Verlag, Berlin, Heidelberg, New York, 1980). · Zbl 0453.57001
[45] Sun, Z. W., Finite covers of groups by cosets or subgroups, Int. J. Math.17(9) (2006) 1047-1064. · Zbl 1113.20037
[46] Sun, Z. W., An improvement of the Znám-Newman result, Chinese Quart. J. Math.6(3) (1991) 90-96.
[47] Sun, Z. W., Covering the integers by arithmetic sequences II.Trans. Amer. Math. Soc.348 (1996) 4279-4320. · Zbl 0884.11013
[48] Z. W. Sun, Classified publications on covering systems, http://math.nju.edu. cn/zwsun/Cref.pdf.
[49] Tardos, G., On the intersection of subgroups of a free group, Invent. Math.108 (1992) 29-36. · Zbl 0798.20015
[50] Tomkinson, M. J., Groups Covered by Abelian Subgroups, , Vol. 121 (Cambridge University Press, 1986). · Zbl 0605.20039
[51] Tomkinson, M. J., Groups covered by finitely many cosets or subgroups, Comm. Algebra15 (1987) 845-859. · Zbl 0613.20025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.