×

A rigidity theorem for homogeneous rational manifolds of rank 1. (English) Zbl 0588.14005

The authors prove the following rigidity theorem for homogeneous-rational manifolds of rank 1 under algebraic deformations: Let \(f:\quad X\to Y\) be a proper morphism of complex algebraic varieties, where Y is regular and all fibers of f are smooth algebraic varieties of constant dimension. Assume that for a closed point \(z\in Y\) the fiber \(V:=f^{-1}(z)\) is a homogeneous-rational manifold of rank 1. Then \(f^{-1}(y)\cong V\) for all closed points \(y\in Y\). Furthermore there is an integer \(r>0\) such that \({\mathcal O}_{f^{-1}(z)}(r)\) extends to an invertible sheaf H on X and \(X\hookrightarrow {\mathbb{P}}(f_*H)\).
Reviewer: K.Oeljeklaus

MSC:

14D20 Algebraic moduli problems, moduli of vector bundles
14M20 Rational and unirational varieties
32G05 Deformations of complex structures
14M17 Homogeneous spaces and generalizations
14D15 Formal methods and deformations in algebraic geometry
Full Text: DOI

References:

[1] Bott, R., Homogeneous vector bundles, Ann. Math., (2), 66, 203-248 (1957) · Zbl 0094.35701
[2] Borel, A.; Hirzebruch, F., Characteristic classes and homogeneous spaces I, Am. J. of Math., 80, 458-538 (1958) · Zbl 0097.36401
[3] A.Borel - A.Weil, Répresentationslinéaires et espaces homogènes käahlérians des groupes de Lie compacts, Exposée par Jean Pierre Serre, Sém. Bourbaki (Mai 1954), no. 100.
[4] Chevalley, C., Sur certains groupes simples, Tôhoku Math. J., 7, 14-66 (1955) · Zbl 0066.01503
[5] Ehresmann, Ch., Sur la topologie de certains espaces homogènes, Ann. Math., 35, 396-443 (1934) · Zbl 0009.32903
[6] A.Grothendieck,Eléments de Géométric Algébrique, Chap. III et IV, Publ. Math. IHES,11 (1961),17 (1963),20 (1964),24 (1965),28 (1966),32 (1967). · Zbl 0236.14003
[7] Hartshorne, R., Algebraic Geometry, GTM52 (1977), New York, Heidelberg, Berlin: Springer-Verlag, New York, Heidelberg, Berlin · Zbl 0367.14001
[8] Hironaka, H., Smoothing of algebraic cycles of small dimension, Am. J. of Math., 90, 1-54 (1968) · Zbl 0173.22801
[9] Idà, M., On rational maps and deformations of quadric and cubic hypersurfaces, Boll. U.M.I. serie VI, II-D, 205-217 (1983) · Zbl 0586.14005
[10] Iitaka, S., Algebraic Geometry, GTM 76 (1982), New York, Heidelberg, Berlin: Springer-Verlag, New York, Heidelberg, Berlin · Zbl 0491.14006
[11] Kodaira, K.; Spencer, D. C., On deformations of complex analytic structures, I, Ann. of Math., 67, 328-401 (1958) · Zbl 0128.16901
[12] Serre, J. P., Géométrie Algébrique et Géométrie Analytique, Ann. Inst. Fourier, 6, 1-42 (1956) · Zbl 0075.30401
[13] Serre, J. P., Algèbre de Lie semi-simples complexes (1966), New York, Amsterdam: Benjamin, New York, Amsterdam · Zbl 0144.02105
[14] Grothendieck, A., Séminaire de Géométrie Algébrique du Bois-Marie 1960-61, Lecture Notes in Mathematics 224 (1971), New York, Heidelberg, Berlin: Springer-Verlag, New York, Heidelberg, Berlin · Zbl 0234.14002
[15] Srinivasacharyulu, K., Sur la déformation de certaines variétés complexes, C. R. Acad. Sci. (Paris), 252, 3377-3378 (1961) · Zbl 0100.36201
[16] M.Steinsiek,Über Homogen-Rationale Mannigfaltigkeiten Schriftenz, Math. Inst. Univ. Münster, 2. Serie, Bd. 23 (1982). · Zbl 0491.32025
[17] Steinsiek, M., Homogeneous-Rational Manifolds and Unique Factorization, Compositio Math., 52, 221-229 (1984) · Zbl 0559.14035
[18] Varadarajan, V. S., Lie Groups, Lie Algebras and their Representations (1974), Englewood Cliffs, N.J.: Prentice-Hall Inc., Englewood Cliffs, N.J. · Zbl 0371.22001
[19] Wang, H. C., Closed manifolds with homogeneous complex structure, Am. J., of Math., 75, 1-32 (1954) · Zbl 0055.16603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.