×

Three-dimensional manifolds, skew-Gorenstein rings and their cohomology. (English) Zbl 1237.16007

Summary: Graded skew-commutative rings occur often in practice. Here are two examples: 1) The cohomology ring of a compact three-dimensional manifold. 2) The cohomology ring of the complement of a hyperplane arrangement (the Orlik-Solomon algebra). We present some applications of the homological theory of these graded skew-commutative rings. In particular we find compact oriented 3-manifolds without boundary for which the Hilbert series of the Yoneda Ext-algebra of the cohomology ring of the fundamental group is an explicit transcendental function. This is only possible for large first Betti numbers of the 3-manifold (bigger than – or maybe equal to – 11). We give also examples of 3-manifolds where the Ext-algebra of the cohomology ring of the fundamental group is not finitely generated.

MSC:

16E65 Homological conditions on associative rings (generalizations of regular, Gorenstein, Cohen-Macaulay rings, etc.)
57N10 Topology of general \(3\)-manifolds (MSC2010)
52C35 Arrangements of points, flats, hyperplanes (aspects of discrete geometry)
13D40 Hilbert-Samuel and Hilbert-Kunz functions; Poincaré series
55P62 Rational homotopy theory
57N65 Algebraic topology of manifolds

Software:

BERGMAN; Macaulay2

References:

[1] D.J. Anick and T.H. Gulliksen, Rational dependence among Hilbert and Poincaré series , J. Pure Appl. Algebra 38 (1985), 135-157. · Zbl 0575.13008 · doi:10.1016/0022-4049(85)90005-2
[2] L.L. Avramov and G.L. Levin, Factoring out the socle of a Gorenstein ring , J. Algebra 55 (1978), 74-83. · Zbl 0407.13018 · doi:10.1016/0021-8693(78)90191-6
[3] J. Backelin, et al., BERGMAN, A programme for non-commutative Gröbner basis calculations , available at http://servus.math.su.se/bergman/.
[4] Hyman Bass, On the ubiquity of Gorenstein rings , Math. Z. 82 (1963), 8-28. · Zbl 0112.26604 · doi:10.1007/BF01112819
[5] Dave Benson, An algebraic model for chains on \(\O BG^\wedge_p\) , Trans. Amer. Math. Soc. 361 (2009), 2225-2242. · Zbl 1167.55003 · doi:10.1090/S0002-9947-08-04728-4
[6] R. Bøgvad, Gorenstein rings with transcendental Poincaré-series , Math. Scand. 53 (1983), 5-15. · Zbl 0527.13013
[7] D.C. Cohen and A.I. Suciu, The boundary manifold of a complex line arrangement. Groups, homotopy and configuration spaces , Geom. Topol. Monogr. 13 · Zbl 1137.32013 · doi:10.2140/gtm.2008.13.105
[8] D. Eisenbud, Commutative algebra. With a view toward algebraic geometry , Grad. Texts Math. 150 , Springer-Verlag, Berlin, 1995. +785 p. · Zbl 0819.13001
[9] S. El Khoury and H. Srinivasan, A class of Gorenstein artin algebras of embedding dimension four , Communications in Algebra 37 (2009), 3259-3277. · Zbl 1182.13008 · doi:10.1080/00927870802502738
[10] R.M. Fossum, P.A. Griffith and I. Reiten, Trivial extensions of abelian categories. Homological algebra of trivial extensions of abelian categories with applications to ring theory , Lect. Notes Math. 456 , Springer-Verlag, Berlin, 1975. · Zbl 0303.18006
[11] R. Fröberg, Determination of a class of Poincaré series , Math. Scand. 37 (1975), 29-39.
[12] —-, Koszul algebras. Advances in commutative ring theory ,
[13] D.R. Grayson and M.E. Stillman, Macaulay2, a software system for research in algebraic geometry , available at http://www.math.uiuc.edu/Macaulay2/.
[14] T.H. Gulliksen, Massey operations and the Poincaré series of certain local rings , J. Algebra 22 (1972), 223-232. · Zbl 0243.13015 · doi:10.1016/0021-8693(72)90143-3
[15] G.B. Gurevich, Foundations of the theory of algebraic invariants , Transl. by J.R.M. Radok and A.J.M. Spencer, P. Noordhoff Ltd., Groningen, 1964 · Zbl 0128.24601
[16] C. Huneke and A. Vraciu, Rings which are almost Gorenstein , · Zbl 1148.13005
[17] A.F. Ivanov, Homological characterization of a class of local rings , (Russian) Mat. Sb. (N.S.) 110 (152) (1979), 454-458, 472. · Zbl 0431.13019
[18] J. Lescot, Séries de Bass des modules de syzygie , [Bass series of syzygy modules] Algebra, algebraic topology and their interactions , · Zbl 0594.13012 · doi:10.1007/BFb0075467
[19] —-, La série de Bass d’un produit fibré d’anneaux locaux , [The Bass series of a fiber product of local rings], Paul Dubreil and Marie-Paule Malliavin algebra seminar, 35th year (Paris, 1982), · Zbl 0563.13007
[20] —-, Asymptotic properties of Betti numbers of modules over certain rings , J. Pure Appl. Algebra 38 (1985), 287-298. · Zbl 0602.13004 · doi:10.1016/0022-4049(85)90016-7
[21] —-, Contribution à l’étude des séries de Bass , thesis, Université de Caen, 1985.
[22] G.L. Levin, Modules and Golod homomorphisms , J. Pure Appl. Algebra 38 (1985), 299-304. · Zbl 0585.13005 · doi:10.1016/0022-4049(85)90017-9
[23] C. Löfwall, The global homological dimensions of trivial extensions of rings , J. Algebra 39 (1976), 287-307. · Zbl 0325.16022 · doi:10.1016/0021-8693(76)90078-8
[24] —-, On the subalgebra generated by the one-dimensional elements in the Yoneda Ext-algebra , in Algebra, algebraic topology and their interactions , · Zbl 0595.16020
[25] C. Löfwall and J.-E. Roos, Cohomologie des algèbres de Lie graduées et séries de Poincaré-Betti non rationnelles , C.R. Acad. Sci. Paris Ser. A-B 290 Ser. A-B (1980),. 16, A733-A736. · Zbl 0449.13011
[26] —-, A nonnilpotent 1-2 -presented graded Hopf algebra whose Hilbert series converges in the unit circle, Adv. Math. 130 (1997), 161-200. · Zbl 0903.17012 · doi:10.1006/aima.1997.1667
[27] E. Matlis, Injective modules over Noetherian rings , Pacific J. Math. 8 (1958), 511-528. · Zbl 0084.26601 · doi:10.2140/pjm.1958.8.511
[28] J. Milnor, A unique decomposition theorem for \(3\)-manifolds , Amer. J. Math. 84 (1962), 1-7. JSTOR: · Zbl 0108.36501 · doi:10.2307/2372800
[29] L.E. Positselski, The correspondence between Hilbert series of quadratically dual algebras does not imply their having the Koszul property , (Russian) Funkt. Anal. Pril. 29 (1995), 83-87; translation in Funct. Anal. Appl. 29 (1996), 213-217.
[30] J.-E. Roos, Relations between Poincaré-Betti series of loop spaces and of local rings , Sém. Alg. Paul Dubreil 31 (Paris, 1977-1978), 285-322, Lect. Notes Math. 740 , Springer, Berlin, 1979. · Zbl 0415.13012
[31] —-, The homotopy Lie algebra of a complex hyperplane arrangement is not necessarily finitely presented , Experiment. Math. 17 (2008), 129-143. · Zbl 1191.16009 · doi:10.1080/10586458.2008.10129030
[32] —-, Homological properties of quotients of exterior algebras , in preparation, Abstract available at Abstracts Amer. Math. Soc. 21 (2000), 50-51.
[33] —-, On the characterisation of Koszul algebras. Four counterexamples , C.R. Acad. Sci. Paris 321 Ser. I (1995), 15-20. · Zbl 0848.13018
[34] —-, A description of the homological behaviour of families of quadratic forms in four variables , in Syzygies and geometry , Boston (1995), A. Iarrobino, A. Martsinkovsky and J. Weyman, eds., Northeastern University, 1995, 86-95.
[35] A.S. Sikora, Cut numbers of \(3\)-manifolds , Trans. Amer. Math. Soc. 357 (2005), 2007-2020 (electronic). · Zbl 1064.57018 · doi:10.1090/S0002-9947-04-03581-0
[36] D. Sullivan, On the intersection ring of compact three manifolds , Topology 14 (1975), 275-277. · Zbl 0312.57003 · doi:10.1016/0040-9383(75)90009-9
[37] W. Teter, Rings which are a factor of a Gorenstein ring by its socle , Invent. Math. 23 (1974), 153-162. · Zbl 0276.13018 · doi:10.1007/BF01405167
[38] B. Vinberg and A.G. Elashvili, A classification of the three-vectors of nine-dimensional space (Russian) Trudy Sem. Vektor. Tenzor. Anal. 18 (1978), 197-233; (English translation in Selecta Math. Soviet. 7 (1988), 63-98). · Zbl 0441.15010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.