×

Existence of weak solutions to \(p\)-Navier-Stokes equations. (English) Zbl 1533.35270

Summary: We study the existence of weak solutions to the \(p\)-Navier-Stokes equations with a symmetric \(p\)-Laplacian on bounded domains. We construct a particular Schauder basis in \(W_0^{1,p}(\Omega)\) with divergence free constraint and prove existence of weak solutions using the Galerkin approximation via this basis. Meanwhile, in the proof, we establish a chain rule for the \(L^p\) integral of the weak solutions, which fixes a gap in our previous work. The equality of energy dissipation is also established for the weak solutions considered.

MSC:

35Q35 PDEs in connection with fluid mechanics
35Q30 Navier-Stokes equations
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
35D30 Weak solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35J92 Quasilinear elliptic equations with \(p\)-Laplacian

References:

[1] https://www.claymath.org/millennium-problems.
[2] V. Arnold, Sur la géométrie différentielle des groupes de lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits, In Annales de l’institut Fourier, 16 (1966), 319-361. · Zbl 0148.45301
[3] V. I. Arnold and B. A. Khesin, Topological Methods in Hydrodynamics, volume 125. Springer NatureSwitzerland, 2 edition, 2021. · Zbl 1475.76003
[4] H. Bellout, On a special Schauder basis for the Sobolev spaces \({W}_0^{1, p}({\Omega}) \), Illinois Journal of Mathematics, 39, 187-195 (1995) · Zbl 0829.46017
[5] D. Breit, Existence Theory for Generalized Newtonian Fluids (2017) · Zbl 1364.76002
[6] X. J.-G. Chen Liu, Two nonlinear compactness theorems in \(L^p (0, T; B)\), Applied Mathematics Letters, 25, 2252-2257 (2012) · Zbl 1278.46035 · doi:10.1016/j.aml.2012.06.012
[7] A. X. Cheskidov Luo, Energy equality for the Navier-Stokes equations in weak-in-time Onsager spaces, Nonlinearity, 33, 1388-1403 (2020) · Zbl 1434.35045
[8] M. J. Crochet, A. R. Davies and K. Walters, Numerical Simulation of Non-Newtonian Flow, Elsevier Scientific Publishing Co., Amsterdam, 1984. · Zbl 0583.76002
[9] L. Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, In Annales de l’Institut Henri Poincaré (C) Non Linéar Analysis, 15 (1998), 493-516. · Zbl 0911.35009
[10] L. C. Evans, Partial Differential Equations, volume 19. American Mathematical Society, Providence, RI, 1998. · Zbl 0902.35002
[11] S. O. J. Fučík John Nečas, On the existence of schauder bases in sobolev spaces, Commentationes Mathematicae Universitatis Carolinae, 13, 163-175 (1972) · Zbl 0231.46064
[12] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-state Problems, Springer, New York, 2011. · Zbl 1245.35002
[13] L. J.-G. Li Liu, \(p\)-Euler equations and \(p \)-Navier-Stokes equations, J. Differ. Equations, 264, 4707-4748 (2018) · Zbl 1384.35093 · doi:10.1016/j.jde.2017.12.023
[14] P.-L. Lions, Mathematical Topics in Fluid Mechanics: Volume 1: Compressible Models (1996) · Zbl 0866.76002
[15] J.-G. Z. Liu Zhang, Existence of global weak solutions of \(p \)-navier-stokes equations, Discrete and Continuous Dynamical Systems-B, 27, 469-486 (2021) · Zbl 1503.35136 · doi:10.3934/dcdsb.2021051
[16] C. Parés, Existence, uniqueness and regularity of solution of the equations of a turbulence model for incompressible fluids, Applicable Analysis, 43, 245-296 (1992) · Zbl 0739.35075 · doi:10.1080/00036819208840063
[17] M. Renardy and R. C Rogers, An Introduction to Partial Differential Equations, volume 13. Springer-Verlag, New York, 2004. · Zbl 1072.35001
[18] J. Simon, Compact sets in the space \(L^p (0, T; B)\), Annali di Matematica Pura ed Applicata, 146, 65-96 (1986) · Zbl 0629.46031 · doi:10.1007/BF01762360
[19] L. Tartar, An Introduction to Navier-Stokes Equation and Oceanography, volume 1. Springer-Verlag, BerlinUMI, Bologna, 2006. · Zbl 1194.86001
[20] J. L. Vázquez, The Porous Medium Equation: Mathematical Theory (2007) · Zbl 1107.35003
[21] D. H. Veiga Beirao, Navier-Stokes equations with shear thinning viscosity regularity up to the boundary, Journal of Mathematical Fluid Mechanics, 11, 258-273 (2009) · Zbl 1190.35174 · doi:10.1007/s00021-008-0258-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.