×

Chebyshev collocation solutions of flow problems. (English) Zbl 0722.76045

Summary: Chebyshev collation methods are reviewed. For general second-order elliptic equations, the algebraic system obtained through the collocation process is ill-conditioned. Recent work on finite element preconditioning shows that bilinear elements give full satisfaction. For Stokes problems, as interpolants of different degree are used for the velocity and the pressure, the classical nine-node Lagrangian element with biquadratic velocities and bilinear pressures constitutes the best choice. In order to treat the nonlinear terms, a Newton’s method is designed. Domain decomposition is set up with the jumps of the stress vector across interfaces between adjacent subdomains. Two-dimensional curvy geometries are handled by a coordinate mapping. Problems with singularities are treated by a mixed finite element and spectral approximation. Finally, current developments for non-Newtonian fluids are evoked.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76D07 Stokes and related (Oseen, etc.) flows
Full Text: DOI

References:

[1] Orszag, S. A., Spectral methods for problems in complex geometries, J. Comput. Phys., 37, 70-92 (1980) · Zbl 0476.65078
[2] Morchoisne, Y., Résolution des équations de Navier-Stokes par une méthode pseudospectrale en espacetemps, La Recherche Aérospatiale, 1979-1985, 293-305 (1979) · Zbl 0418.76026
[3] Deville, M. O.; Mund, E. H., Chebyshev pseudospectral solution of second-order elliptic equations with finite element preconditioning, J. Comput. Phys., 60, 517-533 (1985) · Zbl 0585.65073
[4] Deville, M. O.; Mund, E. H., Finite element preconditioning for pseudospectral solutions of elliptic problems, SIAM J. Sci. Stat. Comput., 11 (1990) · Zbl 0701.65075
[5] Brezzi, F., On the existence, uniqueness and approximation of saddle point problems arising from Lagrangian multipliers, RAIRO Numer. Anal., 8, 129-151 (1974) · Zbl 0338.90047
[6] Babuska, I., The finite element method with Lagrangian multipliers, Numer. Math., 20, 179-192 (1973) · Zbl 0258.65108
[7] Demaret, P.; Deville, M. O., Chebyshev pseudospectral solution of the Stokes equations using finite element preconditioning, J. Comput. Phys., 83, 463-484 (1989) · Zbl 0672.76039
[8] P. Demaret and M.O. Deville, Chebyshev collocation solutions of the Navier-Stokes equations using multi-domain decomposition and finite element preconditioning, submitted.; P. Demaret and M.O. Deville, Chebyshev collocation solutions of the Navier-Stokes equations using multi-domain decomposition and finite element preconditioning, submitted. · Zbl 0726.76066
[9] Canuto, C.; Pietra, P., Boundary and interface conditions within a finite element preconditioner for spectral methods, Instituto di Analisi Numerica del C.N.R., Pavia, Report No. 553 (1987)
[10] Gordon, W. J.; Hall, C. A., Transfinite element methods. Blending function interpolation over arbitrary curved element domains, Numer. Math., 21, 109-129 (1973) · Zbl 0254.65072
[11] Crochet, M. J.; Davies, A. R.; Walters, K., Numerical Simulation of Non-Newtonian Flow (1984), Elsevier: Elsevier Amsterdam · Zbl 0583.76002
[12] Canuto, C.; Quarteroni, A., Preconditioner minimal residual methods for Chebyshev spectral calculations, J. Comput. Phys., 60, 315-337 (1985) · Zbl 0615.65118
[13] Francken, P.; Deville, M. O.; Mund, E. H., On the spectrum of the iteration operator associated to the finite element preconditioning of Chebyshev collocation calculations, Comput. Methods Appl. Mech. Engrg., 80, 295-304 (1990) · Zbl 0727.65089
[14] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods in Fluid Mechanics (1988), Springer: Springer New York · Zbl 0658.76001
[15] Sani, R. L.; Gresho, P. M.; Lee, R. L.; Griffiths, D. F., The cause and cure (?) of the spurious pressures generated by certain FEM solutions of the incompressible Navier-Stokes equations, Internat. J. Numer. Methods Fluids, 1, 17-44 (1981) · Zbl 0461.76021
[16] Demaret, P.; Deville, M. O.; Schneidesch, C., Thermal convection solutions by Chebyshev pseudospectral multi-domain decomposition and finite element preconditioning, Appl. Numer. Math., 6, 107-121 (1989/1990) · Zbl 0678.76088
[17] Ghia, U.; Ghia, K. N.; Shin, C. T., High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48, 387-411 (1982) · Zbl 0511.76031
[18] Metivet, B., Résolution spectrale des équations de Navier-Stokes par une méthode de sous-domaines courbes, (Thèse de doctorat d’état (1987), Université Pierre et Marie Curie: Université Pierre et Marie Curie Paris) · Zbl 0523.76018
[19] Demaret, P.; Deville, M. O., Chebyshev pseudospectral solutions of the Navier-Stokes equations by domain decomposition and finite element preconditioning, (Chung, T. J.; Karr, G. R., Finite Element Analysis in Fluids (1989), UAH Press: UAH Press Huntsville), 1409-1415 · Zbl 0726.76066
[20] Bernardi, C.; Maday, Y., Coupling spectral and finite element methods for the Poisson equation: A review, (Chung, T. J.; Karr, G. R., Finite Element Analysis in Fluids (1989), UAH Press: UAH Press Huntsville), 1402-1408
[21] Crochet, M. J., Finite element methods for non-Newtonian flows, (VKI Lecture series on Non-Newtonian Flows (1985), Rhode-St-Genése: Rhode-St-Genése Belgium) · Zbl 0875.76244
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.