×

Generalization of \(T\) and \(A\) integrals to time-dependent materials: analytical formulations. (English) Zbl 1273.74517

Summary: This paper deals with the generalization of \(T\)-integral to crack growth process in viscoelastic materials. In order to implement this expression in a finite element software, a modelling form of this integral, called \(A\theta\), is developed. The analytical formulation is based on conservative law, independent path integral, and a combination of real, virtual displacement fields, and real, virtual thermal fields introducing, in the same time, a bilinear form of free energy density \(F\). According to the generalization of Noether’s method, the application of Gauss Ostrogradski’s theorem combined with curvilinear cracked contour, \(T_v\) is obtained. By introducing a volume domain around crack tip, the modelling expression \(A\theta\) is also defined. Finally, the viscoelastic generalization through a thermodynamic approach, called \(A_v\), is introduced by using a discretisation of the creep tensor according to a generalized Kelvin Voigt representation.

MSC:

74R20 Anelastic fracture and damage
74D05 Linear constitutive equations for materials with memory
74F05 Thermal effects in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Attigui M, Petit C (1997) Mixed-mode separation in dynamic fracture mechanics: new path independent integrals. Int J Fract 84: 19–36. doi: 10.1023/A:1007358701493 · doi:10.1023/A:1007358701493
[2] Bui HD, Proix JM (1984) Lois de conservation en thermoélasticité linéaire. C.R Acad Sci Paris, pp 298–325
[3] Bui HD, Proix JM (1985) Découplage des modes mixtes de rupture en thermoélasticité linéaire par les intégrales indépendantes du contour, Actes du Troisième Colloque Tendances Actuelles en Calcul de Structure, Bastia, pp 631–643
[4] Bui HD (2007) Conservation laws, duality and symmetry loss in solid mechanics. Int J Fract 147: 163–172. doi: 10.1007/s10704-007-9145-7 · Zbl 1141.74008 · doi:10.1007/s10704-007-9145-7
[5] Chazal C, Dubois F (2001) A new incremental formulation in the time domain of crack initiation in an orthotropic linearly viscoelastic solid. Mech Time-Depend Mater 5: 229–253. doi: 10.1023/A:1017922223094 · doi:10.1023/A:1017922223094
[6] Chen FMK, Shield RT (1977) Conservation laws in elasticity of J-integral type. J Appl Mech Phys 28: 1–22 · Zbl 0367.73024
[7] Destuynder P, Djaoua M, Lescure S (1983) Some remarks on elastic fracture mechanics. J Mec Theor et Appl 2: 113–135 · Zbl 0582.73088
[8] Donea J, Giuliani S, Halleux JP (1982) An arbitrary–Lagrangian-Euleurian finite element methods for transient dynamic fluid–structure–interactions. Compos Methods Appl Mech Eng 33: 689–723 · Zbl 0508.73063 · doi:10.1016/0045-7825(82)90128-1
[9] Dubois F, Chazal C, Petit C (1999) A finite element analysis of creep-crack growth in viscoelastic media. Mech Time-Depend Mater 2: 269–286. doi: 101023A1009831400270 · doi:10.1023/A:1009831400270
[10] Dubois F, Randriambololona H, Petit C (2005) Creep in wood under variable climate condition: numerical modelling and experimental validation. Mech Time-Depend Mater 9: 173–202. doi: 10.1007/s11043-005-1083-z · doi:10.1007/s11043-005-1083-z
[11] Moutou Pitti R, Dubois F, Pop O, Sauvat N, Petit C (2007a) Intégrale Mv pour la propagation de fissure dans un milieu viscoélastique. C.R Mecanique 335: 727–731. doi: 10.1016/j.crme.2007.07.004 · Zbl 1132.74041 · doi:10.1016/j.crme.2007.07.004
[12] Moutou Pitti R, Dubois F, Petit C et al (2007b) Mixed mode fracture separation in viscoelastic orthotropic media: numerical and analytical approach by the M{\(\theta\)}{\(\nu\)}. Int J Fract 145: 181–193. doi: 10.1007/s10704-007-9111-4 · Zbl 1198.74087 · doi:10.1007/s10704-007-9111-4
[13] Moutou Pitti R, Dubois F, Petit C et al (2008a) A new M integral parameter for mixed mode crack growth in orthotropic viscoelastic material. Eng Fract Mech 75: 4450–4465. doi: 10.1016/j.engfracmech.2008.04.021 · doi:10.1016/j.engfracmech.2008.04.021
[14] Moutou Pitti R, Dubois F, Pop O (2008b) Mixed-mode fracture in viscoelastic material. In: Proceeding of XXII international congress of theoretical and applied mechanics. Adelaide, Australia · Zbl 1145.74423
[15] Moutou Pitti R (2008c) Mixed mode fracture separation in viscoelastic orthotropic materials: modelling and experimentation. Ph.D. thesis, Limoges University, http://www.unilim.fr/theses/2008/sciences/2008limo4025/notice.htm . Accessed 23 Jan 2009
[16] Noether E (1971) Invariant variations problems. Trans Theor Stat Phys 1: 183–207 · Zbl 0291.49035 · doi:10.1080/00411457108231445
[17] Noether E (1975) Invariant variations problems. Trans Theor Stat Phys 1: 183–207
[18] Rice JR (1968) A path independent integral and the approximate analysis of strain conservations by notches and cracks. J Appl Mech 35: 379–385 · doi:10.1115/1.3601206
[19] Sih GC (1974) Strain energy density factor applied to mixed mode crack problems. Int J Fract 10: 305–321 · doi:10.1007/BF00035493
[20] Staverman AJ, Schwarzl P (1952) Thermodynamics of viscoelastic behaviour. Proc Acad Sci 55: 474–492 · Zbl 0048.19704
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.