×

General solutions of transversely isotropic multilayered media subjected to rectangular time-harmonic or moving loads. (English) Zbl 1481.74055

Summary: This paper presents the general solutions of three-dimensional transversely isotropic multilayered media subjected to a vertical or horizontal rectangular dynamic load by utilizing the analytical layer-element method, and the solutions can be used for both time-harmonic loads and moving ones. Based on the governing equations and constitutive equations of a transversely isotropic elastic body, the analytical layer-element solutions of a single medium layer are derived in the Fourier transformed domain by utilizing the double Fourier integral transform. Taking the continuity conditions between adjacent layer and boundary conditions into account, the global stiffness matrix can be obtained by assembling the interrelated layer elements. The final solutions in the frequency domain are recovered by the inversion of double Fourier integral transform. Numerical examples are given to study the influence of the transversely isotropic character, frequency of load excitation, stratification and the first layer’s thickness when the media are subjected to a time-harmonic load, and the influence of the load speed as well as the load depth when the media are subjected to a moving constant load, respectively.

MSC:

74A50 Structured surfaces and interfaces, coexistent phases
Full Text: DOI

References:

[1] Lamb, H., On the propagation of tremors over the surface of an elastic solid, Philos. Trans. R. Soc. Lond., A, 203, 1-42 (1904) · JFM 34.0859.02
[2] Achenbach, J. D., Wave Propagation in Elastic Solids (1973), North-Holland Publishing Company: North-Holland Publishing Company Amsterdam · Zbl 0268.73005
[3] Aki, K.; Richards, P. G., Quantitative Seismology Theory and Methods (1980), Freeman W H and Company: Freeman W H and Company New York
[4] Miklowitz, J., The Theory of Elastic Waves and Waveguides (1984), North-Holland Publishing Company: North-Holland Publishing Company Amsterdam · Zbl 0565.73025
[5] Adolph, M.; Mesquita, E.; Carvalho, E. R.; Romanini, E., Numerically evaluated displacement and stress solutions for a 3D viscoelastic half space subjected to a vertical distributed surface stress loading using the radon and Fourier transforms, Commun. Numer. Methods Eng., 23, 8, 787-804 (2007) · Zbl 1116.74071
[6] Mesquita, E.; Adolph, M.; Carvalho, E. R.; Romanini, E., Dynamic displacement and stress solutions for viscoelastic half-spaces subjected to harmonic concentrated loads using the Radon and Fourier transforms, Int. J. Numer. Anal. Methods Geomech., 33, 18, 1933-1952 (2009) · Zbl 1273.74287
[7] Wolf, J. P.; Song, C., Dynamic-stiffness matrix of unbounded soil by finite-element multi-cell cloning, Earthq. Eng. Struct. Dyn., 23, 3, 233-250 (1994)
[8] Wolf, J. P.; Meek, J. W., Dynamic stiffness of foundation on layered soil half-space using cone frustums, Earthq. Eng. Struct. Dyn., 23, 10, 1079-1095 (1994)
[9] Stoneley, R., The seismological implication of aeolotropy in continental structures, Geophys. Suppl. Mon. Not. R. Astron. Soc., 5, 8, 343-353 (1949) · Zbl 0039.24004
[10] Synge, J. L., Elastic waves in anisotropic media, J. Math. Phys., 35, 35, 323-334 (1957) · Zbl 0080.39003
[11] Buchwald, V. T., Rayleigh waves in transversely isotropic media, Q. J. Mech. Appl. Math., 14, 4, 293-317 (1961) · Zbl 0113.18705
[12] Payton, R. G., Elastic Wave Propagation in Transversely Isotropic Media (1983), Martinus Nijhoff: Martinus Nijhoff The Netherlands · Zbl 0574.73023
[13] Rajapakse, R. K.D.; Wang, Y., Elastodynamic Green’s functions of orthotropic half plane, J. Eng. Mech. ASCE, 117, 3, 588-604 (1991)
[14] Rajapakse, R. K.N. D.; Wang, Y., Green’s functions for transversely isotropic elastic half space, J. Eng. Mech. ASCE, 119, 9, 1724-1746 (1993)
[15] Wang, C. Y.; Achembach, J. D., Three-dimensional time-harmonic elastodynamic Green’s functions for anisotropic solids, Proc. R. Soc. Lond. Ser. A—Math. Phys. Sci., 449, 1937, 441-458 (1995) · Zbl 0852.73011
[16] Liu, K. S.; Li, X.; Sun, X. N., A numerical method for axisymmetric wave propagation problem of anisotropic solids, Comput. Methods Appl. Mech. Eng., 145, 1-2, 109-116 (1997) · Zbl 0894.73217
[17] Dravinski, M.; Niu, Y., Three-dimensional time-harmonic Green’s functions for a triclinic full-space using a symbolic computation system, Int. J. Numer. Methods Eng., 53, 2, 455-472 (2002) · Zbl 1112.74411
[18] Yang, B.; Pan, E.; Tewary, V. K., Three-dimensional Green’s functions of steady-state motion in anisotropic half-space and bimaterials, Eng. Anal. Bound. Elem., 28, 9, 1069-1082 (2004) · Zbl 1130.74362
[19] Eskandri-Ghadi, M., A complete solutions of the wave equations for transversely isotropic media, J. Elast., 81, 1, 1-19 (2005) · Zbl 1092.74019
[20] Shodja, H. M.; Eskandari-Ghadi, M., Axisymmetric time-harmonic response of a transversely isotropic substrate-coating system, Int. J. Eng. Sci., 45, 2-8, 272-287 (2007)
[21] Eskandari-Ghadi, M.; Pak, R. Y.S.; Ardeshir-Behrestaghi, A., Transversely isotropic elastodynamic solution of a finite layer on an infinite subgrade under surface loads, Soil Dyn. Earthq. Eng., 28, 12, 986-1003 (2008)
[22] Thomson, W. T., Transmission of elastic waves through a stratified soil medium, J. Appl. Phys., 21, 2, 89-93 (1950) · Zbl 0036.13304
[23] Haskell, N. A., The dispersion of surface waves on multilayered media, Bull. Seismol. Soc. Am., 43, 1, 17-34 (1953)
[24] Luco, J. E., On the Green’s functions for a layered half-space. Part I, Bull. Seismol. Soc. Am., 73, 4, 909-929 (1983)
[25] Kausel, E.; Roësset, J. M., Stiffness matrices for layered soils, Bull. Seismol. Soc. Am., 71, 6, 1743-1761 (1981)
[26] Kausel, E., Thin-layer method: formulation in the time domain, Int. J. Numer. Methods Eng., 37, 6, 927-941 (1994) · Zbl 0801.73078
[27] Kausel, E., Fundamental Solutions in Elastodynamics: A Compendium (2006), Cambridge University Press · Zbl 1225.74002
[28] Wang, Y.; Rajapakse, R. K.N. D., An exact stiffness method for elastodynamics of a layered orthotopic half-plane, J. Appl. Mech. ASME, 61, 339-348 (1994)
[29] Barbosa, J. M.D. O.; Kausel, E., The thin-layer method in a cross-anisotropic 3D space, Int. J. Numer. Methods Eng., 89, 5, 537-560 (2012) · Zbl 1242.74106
[30] Khojasteh, A.; Rahimain, M.; Eskandari, M.; Pak, R. Y.S., Three-dimensional dynamic Green’s functions for a multilayered transversely isotropic half-space, Int. J. Solids Struct., 48, 9, 1349-1361 (2011) · Zbl 1236.74131
[31] Ai, Z. Y.; Li, Z. X.; Cang, N. R., Analytical layer-element solution to axisymmetric dynamic response of transversely isotropic multilayered half-space, Soil Dyn. Earthq. Eng., 60, 5, 22-30 (2014)
[32] Ai, Z. Y.; Li, Z. X., Time-harmonic response of transversely isotropic multilayered half-space in a cylindrical coordinate system, Soil Dyn. Earthq. Eng., 66, 69-77 (2014)
[33] Ai, Z. Y.; Zhang, Y. F., Plane strain dynamic response of a transversely isotropic multilayered half-plane, Soil Dyn. Earthq. Eng., 75, 211-219 (2015)
[34] Sneddon, I. N., Fourier Transforms (1951), McGraw-Hill: McGraw-Hill New York
[35] Cole, J.; Huth, J., Stresses produced in a half-plane by moving load, J. Appl. Mech. ASME, 25, 433-436 (1958) · Zbl 0097.17404
[36] Eason, G., The stresses produced in a semi-infinite solid by a moving surface force, Int. J. Eng. Sci., 2, 6, 581-609 (1965) · Zbl 0138.21001
[37] Gakenheimer, D. C.; Miklowitz, J., Transient excitation of an elastic half-space by a point load traveling on the surface, J. Appl. Mech. ASME, 36, 3, 239 (1969) · Zbl 0194.27702
[38] Andersen, L.; Nielsen, S. R.K., Boundary element analysis of the steady-state response of an elastic half-space to a moving force on its surface, Eng. Anal. Bound. Elem., 27, 1, 23-38 (2003) · Zbl 1021.74045
[39] Barros, F. C.P. D.; Luco, J. E., Response of a layered viscoelastic half-space to a moving point load, Wave Motion, 19, 2, 189-210 (1994) · Zbl 0926.74038
[40] Kim, S. M., Dynamic response of layered media to moving constant and harmonic loads, KSCE J. Civ. Eng., 2, 3, 233-241 (1998)
[41] Lee, J. H.; Kim, J. K.; Tassoulas, J. L., Dynamic analysis of a layered half-space subjected to moving line loads, Soil Dyn. Earthq. Eng., 47, 16-31 (2013)
[42] Lefeuve-Mesgouez, G.; Mesgouez, A., Three-dimensional dynamic response of a porous multilayered ground under moving loads of various distributions, Adv. Eng. Softw., 46, 1, 75-84 (2012)
[43] Ai, Z. Y.; Ren, G. P., Dynamic analysis of a transversely isotropic multilayered half-plane subjected to a moving load, Soil Dyn. Earthq. Eng., 83, 162-166 (2016)
[44] Ba, Z.; Liang, J.; Lee, V. W.; Huang, J., 3D dynamic response of a multi-layered transversely isotropic half-space subjected to a moving point load along a horizontal straight line with constant speed, Int. J. Solids. Struct., 100-101, 427-445 (2016)
[45] Ba, Z.; Liang, J., Fundamental solutions of a multi-layered transversely isotropic saturated half-space subjected to moving point forces and pore pressure, Eng. Anal. Bound. Elem., 76, 40-58 (2017) · Zbl 1403.74292
[46] Ai, Z. Y.; Mu, J. J.; Ren, G. P., 3D dynamic response of a transversely isotropic multilayered medium subjected to a moving load, Int. J. Numer. Anal. Methods Geomech., 42, 4, 636-654 (2018)
[47] Ai, Z. Y.; Cheng, Y. C., Extended precise integration method for consolidation of transversely isotropic poroelastic layered media, Comput. Math. Appl., 68, 1806-1818 (2014) · Zbl 1369.74083
[48] Cheng, Y. C.; Ai, Z. Y., Consolidation analysis of transversely isotropic layered saturated soils in the Cartesian coordinate system by extended precise integration method, Appl. Math. Model., 40, 4, 2692-2704 (2015) · Zbl 1452.76232
[49] Wang, L. J.; Ai, Z. Y., Plane strain and three-dimensional analyses for thermo-mechanical behaviour of multilayered transversely isotropic materials, Int. J. Mech. Sci., 103, 199-211 (2015)
[50] Ai, Z. Y.; Wu, Q. L.; Wang, L. J., Extended precise integration method for axisymmetric thermo-elastic problem in transversely isotropic material, Int. J. Numer. Anal. Methods Geomech., 40, 2, 297-312 (2016)
[51] Ai, Z. Y.; Wu, Q. L., The behavior of a multilayered porous thermo-elastic medium with anisotropic thermal diffusivity and permeability, Comput. Geotech., 76, 129-139 (2016)
[52] Ai, Z. Y.; Wang, L. J., Thermal performance of stratified fluid-filled geomaterials with compressible constituents around a deep buried decaying heat source, Meccanica, 52, 11-12, 2769-2788 (2017) · Zbl 1457.74134
[53] Ding, H.; Chen, W.; Zhang, L., Elasticity of Transversely Isotropic Materials (2006), Springer: Springer Dordrecht · Zbl 1101.74001
[54] Kim, J. K.; Koh, H. M.; Kwon, K. J.; Yi, J. S., A three-dimensional transmitting boundary formulated in Cartesian co-ordinate system for the dynamics of non-axisymmetric foundations, Earthq. Eng. Struct. Dyn., 29, 1527-1546 (2000)
[55] Sneddon, I. N., The Use of Integral Transforms (1972), McGraw-Hill: McGraw-Hill New York · Zbl 0237.44001
[56] Yimsiri, S.; Soga, K., Cross-anisotropic elastic parameters of two natural stiff clays, Geotechnique, 61, 9, 809-814 (2011)
[57] Liao, J. J.; Wang, C. D., Elastic solutions for a transversely isotropic half-space subjected to a point load, Int. J. Numer. Anal. Methods Geomech., 22, 6, 425-447 (1998) · Zbl 0921.73049
[58] Carrier, G. F., Propagation of waves in orthotropic media, Q. Appl. Math., 4, 160-165 (1946) · Zbl 0063.00717
[59] Rahimian, M.; Eskandari-Ghadi, M.; Pak, R. Y.S.; Khojasteh, A., Elastodynamic potential method for a transversely isotropic solid, J. Eng. Mech. ASCE, 133, 10, 1134-1145 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.