×

Stability and convergence of difference schemes for multi-dimensional parabolic equations with variable coefficients and mixed derivatives. (English) Zbl 1390.65071

Summary: We present second-order difference schemes for a class of parabolic problems with variable coefficients and mixed derivatives. The solvability, stability and convergence of the schemes are rigorously analysed by the discrete energy method. Using the Richardson extrapolation technique, the fourth-order accurate numerical approximations both in time and space are obtained. It is noted that the Richardson extrapolation algorithms can preserve stability of the original difference scheme. Finally, numerical examples are carried out to verify the theoretical results.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] U. Arora, S. Karaa, and R.K. Mohanty, A new stable variable mesh method for 1-D non-linear parabolic partial differential equations, Appl. Math. Comput. 181 (2006), pp. 1423-1430. · Zbl 1105.65089
[2] T.D. Aslam, J.B. Bdzil, and D.S. Stewart, Level set methods applied to modeling detonation shock dynamics, J. Comput. Phys. 126 (1996), pp. 390-409. doi: 10.1006/jcph.1996.0145 · Zbl 0866.76059
[3] H. Baer and K. Stephan, Heat and Mass Transfer, Springer-Verlag, Berlin, Heidelberg, 2006.
[4] D.S. Balsara, D.A. Tilley, and J.C. Howk, Simulating anisotropic thermal conduction in supernova remnants-I. Numerical methods, Mon. Not. R. Astron. Soc. 386 (2008), pp. 627-641. doi: 10.1111/j.1365-2966.2008.13085.x
[5] B. Bialecki and R.I. Fernandes, An alternating direction implicit backward differentiation orthogonal spline collocation method for linear variable coefficient parabolic equations, SIAM J. Numer. Anal. 47 (2009), pp. 3429-3450. doi: 10.1137/080739112 · Zbl 1206.65236
[6] J.R. Cash, Two new finite difference schemes for parabolic equations, SIAM J. Numer. Anal. 21 (1984), pp. 433-446. doi: 10.1137/0721032 · Zbl 0553.65084
[7] M. Ciment, S.H. Leventhal, and B.C. Weinberg, The operator compact implicit method for parabolic equations, J. Comput. Phys. 28 (1978), pp. 135-166. doi: 10.1016/0021-9991(78)90031-1 · Zbl 0393.65038
[8] W.Z. Dai and C.D. Chen, The general three level explicit difference schemes for solving parabolic equation with variable coefficients and mixed derivatives, Numer. Math. J. Chin. Univ. 9(3) (1987), pp. 235-242. · Zbl 0663.65097
[9] W. Dai and R. Nassar, A compact finite-difference scheme for solving a one-dimensional heat transport equation at the microscale, J. Comput. Appl. Math. 132 (2001), pp. 431-441. doi: 10.1016/S0377-0427(00)00445-3 · Zbl 0988.65074
[10] W. Dai and R. Nassar, Compact ADI method for solving parabolic differential equations, Numer. Methods Partial Differential Equations 18 (2002), pp. 129-142. doi: 10.1002/num.1037 · Zbl 1004.65086
[11] B. Düring and C. Heuer, High-order compact schemes for parabolic problems with mixed derivatives in multiple space dimensions, SIAM J. Numer. Anal. 53 (2015), pp. 2113-2134. doi: 10.1137/140974833 · Zbl 1326.65105
[12] R.I. Fernandes and G. Fairweather, Analysis of alternating direction collocation methods for parabolic and hyperbolic problems in two space variables, Numer. Methods Partial Differential Equations 9 (1993), pp. 191-211. doi: 10.1002/num.1690090207 · Zbl 0768.65067
[13] M. Fournié and S. Karaa, Iterative methods and high-order difference schemes for 2D elliptic problems with mixed derivative, J. Appl. Math. Comput. 22 (2006), pp. 349-363. doi: 10.1007/BF02832060 · Zbl 1108.65104
[14] G.H. Gao and Z.Z. Sun, Compact difference schemes for heat equation with Neumann boundary conditions (II), Numer. Methods Partial Differential Equations 29 (2013), pp. 1459-1486. doi: 10.1002/num.21760 · Zbl 1422.65152
[15] S. Karaa, An accurate finite difference scheme for 2-D parabolic problems with mixed derivative, Far. East J. Appl. Math. 23 (2006), pp. 287-297. · Zbl 1111.65072
[16] S. Karaa, High-order difference schemes for 2D elliptic and parabolic problems with mixed derivatives, Numer. Methods Partial Differential Equations 23 (2007), pp. 366-378. doi: 10.1002/num.20181 · Zbl 1112.65082
[17] S. Karaa, A high-order ADI method for parabolic problems with variable coefficients, Int. J. Comput. Math. 86 (2009), pp. 109-120. doi: 10.1080/00207160802217227 · Zbl 1158.65060
[18] S. Karaa and M. Othman, Two-level compact implicit schemes for three-dimensional parabolic problems, Comput. Math. Appl. 58 (2009), pp. 257-263. doi: 10.1016/j.camwa.2009.02.036 · Zbl 1189.65196
[19] J. Li, Y. Chen and G. Liu, High-order compact ADI methods for parabolic equations, Comput. Math. Appl. 52 (2006), pp. 1343-1356. doi: 10.1016/j.camwa.2006.11.010 · Zbl 1121.65092
[20] H.L. Liao and Z.Z. Sun, Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations, Numer. Methods Partial Differential Equations 26 (2010), pp. 37-60. doi: 10.1002/num.20414 · Zbl 1196.65154
[21] P.C. Lin, An explicit difference scheme for solving parabolic equations with mixed derivatives, Numer. Math. J. Chin. Univ. 3 (1983), pp. 281-285. · Zbl 0572.65082
[22] M.S. Ma, W.J. Ma, and X.F. Wang, A compact alternate direct implicit difference method for solving parabolic equation of multi-dimension, Appl. Math. Comput. 212 (2009), pp. 281-286. · Zbl 1166.65372
[23] G.H. Markstein, Non-steady Flame Propagation, Pergamon, MacMillan, New York, 1964.
[24] S. McKee, D.P. Wall, and S.K. Wilson, An alternating direction implicit scheme for parabolic equations with mixed derivative and convective terms, J. Comput. Phys. 126 (1996), pp. 64-76. doi: 10.1006/jcph.1996.0120 · Zbl 0854.65072
[25] R.K. Mohanty, High accuracy difference schemes for a class of three-space-dimensional singular parabolic equations with variable coefficients, J. Comput. Appl. Math. 89 (1998), pp. 39-51. doi: 10.1016/S0377-0427(97)00223-9 · Zbl 0904.65085
[26] A. Mohebbi and M. Dehghan, High-order compact solution of the one-dimensional heat and advection-diffusion equations, Appl. Math. Model. 34 (2010), pp. 3071-3084. doi: 10.1016/j.apm.2010.01.013 · Zbl 1201.65183
[27] E. O’Riordan, M.L. Pickett, and G.I. Shishkin, Parameter-uniform finite difference schemes for singularly perturbed parabolic diffusion-convection-reaction problems, Math. Comp. 75 (2006), pp. 1135-1154. doi: 10.1090/S0025-5718-06-01846-1 · Zbl 1098.65091
[28] J. Qin, The new alternating direction implicit difference methods for solving three-dimensional parabolic equations, Appl. Math. Model. 34 (2010), pp. 890-897. doi: 10.1016/j.apm.2009.07.006 · Zbl 1185.65151
[29] L.I. Rubenstein, The Stefan Problem, American Mathematical Society, Providence, RI, 1971. · Zbl 0219.35043
[30] W.F. Spotz, High-order compact finite difference schemes for computational mechanics, Ph.D. thesis, University of Texas at Austin, Austin, TX, 1995
[31] W.F. Spotz and G.F. Carey, High-order compact scheme for the steady stream-function vorticity equations, Internat. J. Numer. Methods Engrg. 38 (1995), pp. 3497-3512. doi: 10.1002/nme.1620382008 · Zbl 0836.76065
[32] W.F. Spotz and G.F. Carey, A high-order compact formulation for the 3D Poisson equation, Numer. Methods Partial Differential Equations 12 (1996), pp. 235-243. doi: 10.1002/(SICI)1098-2426(199603)12:2<235::AID-NUM6>3.0.CO;2-R · Zbl 0866.65066
[33] W.F. Spotz and G.F. Carey, Extension of high-order compact schemes to time-dependent problems, Numer. Methods Partial Differential Equations 17 (2001), pp. 657-672. doi: 10.1002/num.1032 · Zbl 0998.65101
[34] Z.Z. Sun, An unconditionally stable and ##img####img####img##O(τ2+h4) order ##img####img####img##L∞ convergent difference scheme for parabolic equations with variable coefficients, Numer. Methods Partial Differential Equations 17 (2001), pp. 619-631. doi: 10.1002/num.1030 · Zbl 0996.65096
[35] P.N. Vabishchevich, Flux-splitting schemes for parabolic equations with mixed derivatives, Comput. Math. Math. Phys. 53 (2013), pp. 1139-1152. doi: 10.1134/S0965542513080137 · Zbl 1299.35147
[36] T. Wang and Y.M. Wang, A higher-order compact LOD method and its extrapolations for nonhomogeneous parabolic differential equations, Appl. Math. Comput. 237 (2014), pp. 512-530. · Zbl 1334.65140
[37] L.F. Yukhno, Economic difference scheme for a parabolic equation with a mixed spatial derivative, Comput. Math. Math. Phys. 49 (2009), pp. 1547-1553. doi: 10.1134/S0965542509090097 · Zbl 1199.65363
[38] Y. Zhang and D. Shi, Superconvergence of an ##img####img####img##H1-Galerkin nonconforming mixed finite element method for a parabolic equation, Comput. Math. Appl. 66 (2013), pp. 2362-2375. doi: 10.1016/j.camwa.2013.09.013 · Zbl 1350.65098
[39] J. Zhao, W. Dai, and S. Zhang, Fourth-order compact schemes for solving multidimensional heat problems with Neumann boundary conditions, Numer. Methods Partial Differential Equations 24 (2008), pp. 165-178. doi: 10.1002/num.20255 · Zbl 1185.65157
[40] H. Zhou, Y.J. Wu, and W.Y. Tian, Extrapolation algorithm of compact ADI approximation for two-dimensional parabolic equation, Appl. Math. Comput. 219 (2012), pp. 2875-2884. · Zbl 1309.65102
[41] M. Zlámal, Finite element methods for parabolic equations, Math. Comput. 28 (1974), pp. 393-404. doi: 10.2307/2005915 · Zbl 0296.65054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.