×

Two-parameter homotopy method for nonlinear equations. (English) Zbl 1193.65076

Liao introduced an auxiliary parameter in the homotopy function referred as the zero-order deformation equation to enhance the convergence. In this paper, a second parameter is introduced into the zero-order deformation equation. The use of two auxiliary parameters allows further generalization of the Newton homotopy analysis method. With greater freedom in selecting the auxiliary operator, the resulting schemes caters to a wide range of nonlinear equations including those that are not amenable to conventional Newton type iteration schemes.

MSC:

65H05 Numerical computation of solutions to single equations
65B99 Acceleration of convergence in numerical analysis
Full Text: DOI

References:

[1] Abbasbandy, S., Tan, Y., Liao, S.J.: Newton-homotopy analysis method for nonlinear equations. Appl. Math. Comput. 188(2), 1794–1800 (2007) · Zbl 1119.65032 · doi:10.1016/j.amc.2006.11.136
[2] Allan, F.M., Syam, M.I.: On the analytic solutions of the nonhomogeneous Blasius problem. J. Comput. Appl. Math. 182(2), 362–371 (2005) · Zbl 1071.65108 · doi:10.1016/j.cam.2004.12.017
[3] Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Adaptive multiprecision path tracking. SIAM J. Numer. Anal. 46(2), 722–746 (2008) · Zbl 1162.65026 · doi:10.1137/060658862
[4] Chow, S.N., Mallet-Paret, J., Yorke, J.A.: Finding zeros of maps: homotopy methods that are constructive with probability one. Math. Comput. 32, 887–899 (1978) · Zbl 0398.65029 · doi:10.1090/S0025-5718-1978-0492046-9
[5] Chun, C.: Construction of Newton-like iteration methods for solving nonlinear equations. Numer. Math. 104(3), 297–315 (2006) · Zbl 1126.65042 · doi:10.1007/s00211-006-0025-2
[6] Decker, D.W., Keller, H.B., Kelley, C.T.: Convergence rates for Newton’s method at singular points. SIAM J. Numer. Anal. 20(2), 296–314 (1983) · Zbl 0571.65046 · doi:10.1137/0720020
[7] Hayat, T., Sajid, M.: On analytic solution for thin film flow of a fourth grade fluid down a vertical cylinder. Phys. Lett., A 361(4–5), 316–322 (2007) · Zbl 1170.76307 · doi:10.1016/j.physleta.2006.09.060
[8] Householder, A.S.: The Numerical Treatment of a Single Nonlinear Equation. McGraw-Hill, New York (1970) · Zbl 0242.65047
[9] Johnson, W.P.: The curious history of Faà di Bruno’s formula. Am. Math. Mon. 109(3), 217–234 (2002) · Zbl 1024.01010 · doi:10.2307/2695352
[10] Leykin, A., Verschelde, J., Zhao, A.: Newton’s method with deflation for isolated singularities of polynomial systems. Theor. Comp. Sci. 359(1–3), 111–122 (2006) · Zbl 1106.65046 · doi:10.1016/j.tcs.2006.02.018
[11] Liao, S.J.: The proposed homotopy analysis technique for the solution of nonlinear problems. Ph.D. thesis, Shanghai Jiao Tong University, Shanghai, China (1992)
[12] Liao, S.J.: On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 147(2), 499–513 (2004) · Zbl 1086.35005 · doi:10.1016/S0096-3003(02)00790-7
[13] Liao, S.J., Campo, A.: Analytic solutions of the temperature distribution in Blasius viscous flow problems. J. Fluid Mech. 453, 411–425 (2002) · Zbl 1007.76014 · doi:10.1017/S0022112001007169
[14] Liao, S.J., Tan, Y.: A general approach to obtain series solutions of nonlinear differential equations. Stud. Appl. Math. 119(4), 297–354 (2007) · doi:10.1111/j.1467-9590.2007.00387.x
[15] Mogan, A.P., Sommese, A.J.: A homotopy for solving general polynomial systems that respects m-homogeneous structures. Appl. Math. Comput. 24(2), 101–113 (1987) · Zbl 0635.65057 · doi:10.1016/0096-3003(87)90063-4
[16] Pakdemirli, M., Boyac, H.: Generation of root finding algorithms via perturbation theory and some formulas. Appl. Math. Comput. 184(2), 783–788 (2007) · Zbl 1115.65056 · doi:10.1016/j.amc.2006.05.207
[17] Poincaré, H.: Second complément à l’analysis situs. Proc. Lond. Math. Soc. 32(1), 277–308 (1900) · JFM 31.0477.10 · doi:10.1112/plms/s1-32.1.277
[18] Śmietański, M.J.: Convergence of a generalized Newton and an inexact generalized Newton algorithms for solving nonlinear equations with nondifferentiable terms. Numer. Algorithms 50(4), 401–415 (2009) · Zbl 1163.65026 · doi:10.1007/s11075-008-9232-5
[19] Sommese, A.J., Wampler, C.W.: The Numerical Solution of Systems of Polynomials Arising in Engineering and Science. World Scientific, New Jersey (2005) · Zbl 1091.65049
[20] Watson, L.T.: Solving finite difference approximations to nonlinear two-point boundary value problems by a homotopy method. SIAM J. Sci. Statist. Comput. 1(4), 467–480 (1980) · Zbl 0456.65025 · doi:10.1137/0901034
[21] Wang, X., Li, T.Y.: Nonlinear homotopies for solving deficient polynomial system with parameter. SIAM J. Numer. Anal. 29(4), 1104–1118 (1992) · Zbl 0753.65093 · doi:10.1137/0729060
[22] Wu, Y.Y., Cheung, K.F.: Explicit solution to the exact Riemann problem and application in nonlinear shallow-water equations. Int. J. Numer. Methods Fluids 57(11), 1649–1668 (2008) · Zbl 1210.76033 · doi:10.1002/fld.1696
[23] Wu, Y.Y., Cheung, K.F.: Homotopy solution for nonlinear differential equations in wave propagation problems. Wave Motion 46(1), 1–14 (2009) · Zbl 1231.65138 · doi:10.1016/j.wavemoti.2008.07.002
[24] Ypma, T.J.: Historical development of the Newton-Raphson method. SIAM Rev. 37(4), 531–551 (1995) · Zbl 0842.01005 · doi:10.1137/1037125
[25] Zhu, S.P.: An exact and explicit solution for the valuation of American put options. Quant. Finan. 6(3), 229–242 (2006) · Zbl 1136.91468 · doi:10.1080/14697680600699811
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.