×

Semiclassical stationary states of nonlinear Schrödinger equations with an external magnetic field. (English) Zbl 1062.81056

Summary: We obtain multiple solutions \(u:\mathbb{R}^N\to\mathbb{C}\) of the nonlinear Schrödinger equation with an external magnetic field, \[ \left( \frac hi\nabla-A(x)\right)^2u+\bigl(U(x)-E\bigr)u=f(x,u),\quad x\in \mathbb{R}^N, \] where \(N\geq 2\), \(A\) is a real-valued vector magnetic potential, \(U\) is a real electric potential function and the nonlinear term \(f(x,t)\) grows subcritically in \(t\). The number of solutions to the equation is shown to be bounded below by some number which depends on the category of a set defined by some properties of \(V\) and the coefficients of the nonlinear term. We perform appropriate changes of gauges which are made on functions which are concentrated around points lying in some well-defined manifold.

MSC:

81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
35Q55 NLS equations (nonlinear Schrödinger equations)
81V10 Electromagnetic interaction; quantum electrodynamics
Full Text: DOI

References:

[1] Ambrosetti, A.; Badiale, M.; Cingolani, S., Semiclassical states of nonlinear Schrödinger equations, Arch. Rational Mech. Anal., 140, 285-300 (1997) · Zbl 0896.35042
[2] Avron, J.; Herbst, I.; Simon, B., Schrödinger operators with magnetic fields. I. General interactions, Duke Math. J., 45, 874-883 (1978) · Zbl 0399.35029
[3] Benci, V.; Cerami, G., The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rational Mech. Anal., 114, 79-93 (1991) · Zbl 0727.35055
[4] Benci, V.; Cerami, G., Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology, Calc. Var., 2, 29-48 (1994) · Zbl 0822.35046
[5] S. Cingolani, Variational methods and nonlinear Schrödinger equations, Ph.D. Thesis, Scuola Normale Superiore of Pisa, 1998.; S. Cingolani, Variational methods and nonlinear Schrödinger equations, Ph.D. Thesis, Scuola Normale Superiore of Pisa, 1998.
[6] Cingolani, S.; Lazzo, M., Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations, Top. Method Nonlinear Anal., 10, 1-13 (1997) · Zbl 0903.35018
[7] Coron, J. M., Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci., Ser. I, 299, 209-212 (1984) · Zbl 0569.35032
[8] Coti Zelati, V.; Rabinowitz, P., Homoclinic type solutions for a semilinear PDE on \(R^N\), Comm. Pure Appl. Math., 45, 1217-1269 (1992) · Zbl 0785.35029
[9] Del Pino, M.; Felmer, P. L., Local mountain pass for semilinear elliptic problems in unbounded domains, Calc. Var., 4, 121-137 (1996) · Zbl 0844.35032
[10] Del Pino, M.; Felmer, P. L., Semiclassical states of nonlinear Schrödinger equations, J. Funct. Anal., 149, 245-265 (1997) · Zbl 0887.35058
[11] M. Esteban, P.L. Lions, Stationary solutions of nonlinear Schrödinger equations with an external magnetic field, Partial Differential equations and the Calculus of Variations, Essays in Honor of Ennio De Giorgi, 1989, pp. 401-449.; M. Esteban, P.L. Lions, Stationary solutions of nonlinear Schrödinger equations with an external magnetic field, Partial Differential equations and the Calculus of Variations, Essays in Honor of Ennio De Giorgi, 1989, pp. 401-449. · Zbl 0702.35067
[12] Floer, A.; Weinstein, A., Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69, 397-408 (1986) · Zbl 0613.35076
[13] Gidas, B.; Ni, W. M.; Nirenberg, L., Symmetry of positive solutions of nonlinear elliptic equations in \(R^N\), Math. Anal. Appl., Part A, 7, 369-402 (1981) · Zbl 0469.35052
[14] Grossi, M., Some recent results on a class of nonlinear Schrödinger equations, Math. Z., 235, 687-705 (2000) · Zbl 0970.35039
[15] Jaffe, A.; Taubes, C., Vortices and monopoles, Structure of static gauge theories, Progress in Physics, Vol. 2 (1980), Boston Basel Stuttgard: Boston Basel Stuttgard Birkhauser · Zbl 0457.53034
[16] Kurata, K., Existence and semiclassical limit of the least energy solution to a nonlinear Schrödinger equation with electromagnetic field, Nonlinear Anal. TMA, 41, 763-778 (2000) · Zbl 0993.35081
[17] Kwong, M. K., Uniqueness of Δ \(u\)−\(λu+u^p =0\) in \(R^N\), Arch. Rational Mech. Anal., 105, 243-266 (1989) · Zbl 0676.35032
[18] Li, Y. Y., On a singularly perturbed elliptic equation, Adv. Differential Equation, 2, 955-980 (1997) · Zbl 1023.35500
[19] Lions, P. L., The concentration-compactness principle in the calculus of variationsthe locally compact case. Part I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1, 109-145 (1984) · Zbl 0541.49009
[20] Lions, P. L., The concentration-compactness principle in the calculus of variationsthe locally compact case. Part II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1, 223-283 (1984) · Zbl 0704.49004
[21] Mawhin, J.; Willem, M., Critical Point Theory and Hamiltonian Systems (1989), Springer: Springer Berlin, New York · Zbl 0676.58017
[22] Oh, Y. G., Existence of semiclassical bound states of nonlinear Schrödinger with potential in the class \((V)_a\), Comm. Partial Differential Equation, 13, 1499-1519 (1988) · Zbl 0702.35228
[23] Rabinowitz, P. H., On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43, 27-42 (1992)
[24] M. Reed, B. Simon, Methods of Modern Mathematical Analysis, Vol. II, Academic Press, London, New York, 1972.; M. Reed, B. Simon, Methods of Modern Mathematical Analysis, Vol. II, Academic Press, London, New York, 1972. · Zbl 0242.46001
[25] Shen, Z., Eigenvalue asymptotics and exponential decay of eigenfunction for Schrödinger operator with magnetic fields, Trans. Amer. Math. Soc., 348, 4465-4488 (1996) · Zbl 0866.35088
[26] Shen, Z., On the number of negative eigenvalues for Schrödinger operator with magnetic field, Comm. Math. Phys., 182, 637-660 (1996) · Zbl 0863.35071
[27] Struwe, M., Variational Methods (1996), Springer: Springer Berlin, Heidelberg, New York · Zbl 0864.49001
[28] Wang, X., On a concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153, 223-243 (1993)
[29] Wang, X.; Zeng, B., On concentration of positive bound states of nonlinear Schrödinger equations with competing potential functions, SIAM J. Math. Anal., 28, 633-655 (1997) · Zbl 0879.35053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.