×

Global stabilization of the spinning top with mass imbalance. (English) Zbl 0837.93048

Summary: We consider the stabilization of a top with known imbalance to the sleeping motion. We first define the sleeping motion and show that it is a solution of the equations of motion of a balanced top. In the general case where the top is unbalanced, we derive two families of control laws that globally asymptotically stabilize a top with known imbalance to the sleeping motion using torque actuators. The input torque is produced by two body-fixed torque actuators in one case, and is confined to the inertial \(XY\)-plane in the other. The control-design strategy is based on Hamilton-Jacobi-Bellman theory with zero dynamics. The result is global in the sense that the spinning top can be stabilized to the sleeping motion regardless of spin rate, and from an arbitrary initial motion that has a coning angle of up to \(90^\circ\).

MSC:

93C95 Application models in control theory
93D15 Stabilization of systems by feedback
70E15 Free motion of a rigid body
Full Text: DOI

References:

[1] Bahar L. Y., Journal of Sound and Vibration 158 pp 15– (1992) · Zbl 0925.70215 · doi:10.1016/0022-460X(92)90661-G
[2] Bernstein D. S., International Journal of Robust and Nonlinear Control 3 pp 211– (1993) · Zbl 0795.93041 · doi:10.1002/rnc.4590030303
[3] Byrnes C. I., Systems and Control Letters 12 pp 437– (1989) · Zbl 0684.93059 · doi:10.1016/0167-6911(89)90080-7
[4] Byrnes, C. I., Isidori, A., Monaco, S. and Sabatino, S. Analysis and simulation of a controlled rigid spacecraft: stability and instability near attractors. Proceedings of the 27th Conference on Decision and Control. Austin, TX. pp.81–85.
[5] Chetayev, N. G. 1961. ”The Stability of Motion”. New York: Pergamon Press.
[6] Crabtree, H. 1914. ”An Elementary Treatment of the Theory of Spinning Tops and Gyroscopic Motion”. London: Longmans Green. · JFM 45.1008.09
[7] Ge Z. M., Transactions of ASME, Journal of Applied Mechanics 51 pp 430– (1984) · Zbl 0567.70023 · doi:10.1115/1.3167636
[8] Greenwood, D. T. 1988. ”Principles of Dynamics”. Englewood Cliffs, NJ: Prentice-Hall.
[9] Hughes, P. C. 1986. ”Spacecraft Attitude Dynamics”. New York: John Wiley.
[10] Isidori, A. 1989. ”Nonlinear Control Systems”. Berlin: Springer. · Zbl 0693.93046
[11] Lebedev D. B., PMM USSR 54 pp 13– (1990)
[12] Leimanis, E. 1965. ”The General Problem of the Motion of Coupled Rigid Bodies about a Fixed Point”. New York: Springer. · Zbl 0128.41606
[13] Lewis D., Nonlinearity 5 pp 1– (1992) · Zbl 0753.70004 · doi:10.1088/0951-7715/5/1/001
[14] Macmillan, W. D. 1936. ”Dynamics of Rigid Bodies”. New York: McGraw Hill. · JFM 62.1510.05
[15] Peiffer K., Journal Mecanique 8 pp 323– (1969)
[16] Rodden J. J., Automatica 20 pp 729– (1984) · doi:10.1016/0005-1098(84)90082-7
[17] Rumjancev V. V., Prikladnaia Matematika i Mekhanika 20 pp 51– (1956)
[18] Rumjancev V. V., Symposia Mathematica VI pp 243– (1970)
[19] Rumjancev V. V., Rendiconti del Seminario Matematico dell’Universitd di Padova 68 pp 119– (1983)
[20] Vidyasagar, M. 1993. ”Nonlinear Systems Analysis”. Englewood Cliffs, NJ: Prentice-Hall. · Zbl 0900.93132
[21] Wan C. J., Dynamics and Control 5 pp 321– (1995) · Zbl 0841.93067 · doi:10.1007/BF01968501
[22] Wan, C. J., Coppola, C. T. and Bernstein, D. S. Global asymptotic stabilization of the spinning top. Proceedings of the 1994 American Control Conference. 1994. pp.541–545. MD: Baltimore.
[23] Wan, C. J., Tsiotras, P., Coppola, V. T. and Bernstein, D. S. Global asymptotic stabilization of a spinning top with torque actuators using stereographic projection. Proceedings of the 1994 American Control Conference. 1994. pp.536–540. MD: Baltimore. · Zbl 0882.93067
[24] Wang L.-S., Journal of Nonlinear Science 2 pp 367– (1992) · Zbl 0800.93563 · doi:10.1007/BF01209527
[25] Zhao, R. and Posbergh, T. A. Robust stabilization of a uniformly rotating rigid body. Proceedings of the 1993 American Control Conference. 1993. pp.2406–2412. CA: San Francisco.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.