×

Computing generalized inverses using LU factorization of matrix product. (English) Zbl 1158.65029

The paper is a first attempt to compute \(\{2,3\},\) \(\{2,4\},\) \(\{1,2,3\},\) \(\{1,2,4\}\)-inverses and the Moore-Penrose inverse of a given rational matrix \(A.\)
The firsts section is an introduction in nature.
The second section concerns the characterization of classes \(A\{2,3\},\) \(A\{2,4\},\) \(A\{1,2,3\}\) and \(A\{1,2,4\}\) in terms of matrix products, involving other two rational matrices with appropriate dimensions and corresponding rank. Using these representations, one introduces a method for computing \(\{i,j,k\}\)-inverses of prescribed rank \(s\) of a given rational matrix \(A\). When \(A\) is a constant matrix, one gets an algorithm for computing the Moore-Penrose inverse. The algorithm is applicable to class of rational matrices if this one is implemented in symbolic programming languages like MATHEMATICA, MAPLE etc. The paper presents the implementation in MATHEMATICA. Due to problems with the simplification in rational expressions the above algorithm is not convenient for the implementation in high level programming languages, such as: C++, DELPHI, VISUALBASIC etc. Thus the presented implementation in language DELPHI is applicable only for constant matrices.
Examples illustrating symbolic implementation in MATHEMATICA are presented in the third section. One considers the practical case of implementation, which computes the Moore-Penrose inverse of a constant matrix, in comparison with several known methods such as: Grevile’s partitioning method, LeVerrier-Faddeev algorithm.
The fourth section contains the main conclusions.

MSC:

65F20 Numerical solutions to overdetermined systems, pseudoinverses
15A09 Theory of matrix inversion and generalized inverses
68W30 Symbolic computation and algebraic computation
65F15 Numerical computation of eigenvalues and eigenvectors of matrices

Software:

Maple; Mathematica

References:

[1] Ben-Israel A., Generalized Inverses, Theory and Applications, 2. ed. (2003) · Zbl 1026.15004
[2] DOI: 10.1016/S0096-3003(02)00814-7 · Zbl 1038.65035 · doi:10.1016/S0096-3003(02)00814-7
[3] Campbell S. L., Generalized Inverses of Linear Transformations (1979) · Zbl 0417.15002
[4] Chen L., Parallel Comput. 20 pp 297– (1994)
[5] Courrieu P., Neural Inf. Process. – Lett. Rev. 8 pp 25– (2005)
[6] DOI: 10.1016/S0893-6080(02)00091-6 · doi:10.1016/S0893-6080(02)00091-6
[7] DOI: 10.1080/00207179108953626 · Zbl 0731.93027 · doi:10.1080/00207179108953626
[8] DOI: 10.1016/S0096-3003(01)00092-3 · Zbl 1026.65030 · doi:10.1016/S0096-3003(01)00092-3
[9] DOI: 10.1006/jsco.1997.0168 · Zbl 0894.68088 · doi:10.1006/jsco.1997.0168
[10] DOI: 10.1016/0024-3795(95)00695-8 · Zbl 0869.65028 · doi:10.1016/0024-3795(95)00695-8
[11] DOI: 10.1007/BF01198061 · Zbl 0882.93039 · doi:10.1007/BF01198061
[12] Karampetakis, N. P. and Tzekis, P. On the computation of the generalized inverse of a polynomial matrix. 6th Medit. Symp. New Directions in Control and Automation. pp.1–6. · Zbl 0987.93023
[13] DOI: 10.1080/00207177808922377 · Zbl 0378.93010 · doi:10.1080/00207177808922377
[14] DOI: 10.1080/00207177808922352 · Zbl 0366.93017 · doi:10.1080/00207177808922352
[15] Lovass Nagy V., IEEE Trans. Auto. Control 25 pp 766– (1978)
[16] DOI: 10.1080/00207160512331323353 · Zbl 1068.65051 · doi:10.1080/00207160512331323353
[17] DOI: 10.1016/j.amc.2003.09.004 · Zbl 1064.65031 · doi:10.1016/j.amc.2003.09.004
[18] Rao C. R., Generalized Inverse of Matrices and its Applications (1971) · Zbl 0236.15004
[19] DOI: 10.1016/S0096-3003(03)00768-9 · Zbl 1073.65035 · doi:10.1016/S0096-3003(03)00768-9
[20] Stanimirović P. S., Filomat, Niš 15 pp 71– (2001)
[21] DOI: 10.1016/S0096-3003(03)00768-9 · Zbl 1073.65035 · doi:10.1016/S0096-3003(03)00768-9
[22] DOI: 10.1016/S0096-3003(02)00401-0 · Zbl 1028.65035 · doi:10.1016/S0096-3003(02)00401-0
[23] Stanimirović P. S., Indian J. Pure Appl. Math. 29 pp 1159– (1998)
[24] Wang G., Generalized Inverses: Theory and Computations (2004)
[25] DOI: 10.1016/S0096-3003(98)10118-2 · Zbl 1022.65043 · doi:10.1016/S0096-3003(98)10118-2
[26] Wolfram S., The Mathematica Book, 4. ed. (1999)
[27] DOI: 10.1007/BF02238196 · Zbl 0566.65026 · doi:10.1007/BF02238196
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.