×

Topological methods in surface dynamics. (English) Zbl 0810.54031

Summary: This paper surveys applications of low-dimensional topology to the study of the dynamics of iterated homeomorphisms on surfaces. A unifying theme in the paper is the analysis and application of isotopy stable dynamics, i.e. dynamics that are present in the appropriate sense in every homeomorphism in an isotopy class. The first step in developing this theme is to assign coordinates to periodic orbits. These coordinates record the isotopy, homotopy, or homology class of the corresponding orbit in the suspension flow. The isotopy stable coordinates are then characterized, and it is shown that there is a map in each isotopy class that has just these periodic orbits and no others. Such maps are called dynamically minimal representatives, and they turn out to have strong global isotopy stability properties as maps. The main tool used in these results is the Thurston-Nielsen theory of isotopy classes of homeomorphisms of surfaces. This theory is outlined and then applications of isotopy stability results are given. These results are applied to the class rel a periodic orbit to reach conclusions about the complexity of the dynamics of a given homeomorphism. Another application is via dynamical partial orders, in which a periodic orbit with a given coordinate is said to dominate another when it always implies the existence of the other. Applications to rotation sets are also surveyed.

MSC:

54H20 Topological dynamics (MSC2010)
37E99 Low-dimensional dynamical systems
57M60 Group actions on manifolds and cell complexes in low dimensions
57S05 Topological properties of groups of homeomorphisms or diffeomorphisms
Full Text: DOI

References:

[1] Alseda, L.; Llibre, J.; Misiurewicz, M., Combinatorial Dynamics and Entropy in Dimension One (1993), World Scientific: World Scientific Singapore · Zbl 0843.58034
[2] Aranson, S. Kh.; Grimes, V. Z., Topological classification of flows on closed two-dimensional manifolds, Russ. Math. Surveys, 41, 183-208 (1986) · Zbl 0615.58015
[3] Arnol’d, V. I., Geometrical Methods in the Theory of Ordinary Differential Equations (1988), Springer: Springer Berlin · Zbl 0648.34002
[4] Asimov, D.; Franks, J., Unremovable closed orbits, (Palis, J., Geometric Dynamics, 1007 (1983), Springer: Springer Berlin), 22-29, (revised version in preprint). · Zbl 0521.58047
[5] Batterson, S.; Smillie, J., Filtrations and periodic data on surfaces, Amer. J. Math., 108, 193-234 (1986) · Zbl 0609.58021
[6] Benardete, D.; Gutierrez, M.; Nitecki, Z., Braids and the Thurston-Nielsen classification (1991), Tufts University, preprint
[7] Bers, L., An extremal problem for quasiconformal mappings, Acta. Math., 141, 73-98 (1978) · Zbl 0389.30018
[8] Bestvina, M.; Handel, M., Train tracks and automorphisms of free groups, Ann. Math., 135, 1-51 (1992) · Zbl 0757.57004
[9] Bestvina, M.; Handel, M., Train tracks for surface homeomorphisms (1992), CUNY, preprint · Zbl 0837.57010
[10] Birman, J., Braids, Links and Mapping Class Groups, (Annals of Mathematics Studies (1975), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ) · Zbl 0305.57013
[11] Birman, J.; Kidwell, M., Fixed points of pseudo-Anosov diffeomorphisms of surfaces, Adv. Math., 46, 73-98 (1982)
[12] Birman, J.; Williams, R., Knotted periodic orbits in dynamical systems II: knot holders for fibered knots, Contemp. Math., 20, 1-60 (1983) · Zbl 0526.58043
[13] Blanchard, P.; Franks, J., The dynamical complexity of orientation reversing homeomorphisms of surfaces, Invent. Math., 62, 333-339 (1980) · Zbl 0481.58020
[14] Block, L.; Coppel, W., Dynamics in one dimension, (Lecture Notes in Math., 1513 (1992), Springer: Springer Berlin) · Zbl 0746.58007
[15] Bonatti, C.; Gambaudo, J. M.; Lion, J. L.; Tresser, C., Wandering domains for infinitely renormalizable diffeomorphisms of the disk (1993), Université de Nice Sophia-Antipolis, preprint
[16] Bowen, R., Entropy and the fundamental group, (Markeley, N.; Martin, J.; Perrizon, W., The structure of Attrators in Dynamical Systems, 668 (1978), Springer: Springer Berlin), 21-30, Lecture Notes in Math. · Zbl 0389.58010
[17] Boyland, P., Braidtypes and a topological method of proving positive entropy (1984), Boston University, preprint
[18] Boyland, P., An analog of Sharkovski’s theorem for twist maps, Contemp. Math., 81, 119-133 (1988) · Zbl 0677.58039
[19] Boyland, P., Rotation sets and Morse decompositions for twist maps, Ergod. Theor. Dynam. Sys., \(8^∗, 33-61 (1988)\) · Zbl 0636.58017
[20] Boyland, P., Notes on dynamics of surface homeomorphisms: lectures by P. Boyland and J. Franks, notes by C. Carroll, J. Guaschi and T. Hall, 1-48 (August 1989), Warwick
[21] Boyland, P., Rotation sets and monotone orbits for annulus homeomorphisms, Comm. Math. Helv., 67, 203-213 (1992) · Zbl 0763.58012
[22] Boyland, P., Proceedings of the IMA Workshop on Twist Maps, (IMA Volumes in Math. Appl., 44 (1992), Springer: Springer Berlin), The rotation set as a dynamical invariant
[23] Boyland, P., Isotopy stability for dynamics on surfaces, (IMS preprint 93/10 (1993), SUNY at Stony Brook: SUNY at Stony Brook NY) · Zbl 0959.37033
[25] Boyland, P.; Hall, T.; Guaschi, J., L’ensemble de rotation des homéomorphismes pseudo-Anosov, C.R. Acad. Sci. Paris. Sér I Math., 316, 1077-1080 (1993) · Zbl 0783.58055
[26] Brouwer, L., Über die periodischen transformationen der Kugel, Math. Ann., 80, 39-41 (1919) · JFM 47.0527.01
[27] Brown, R. F., The Lefschetz Fixed Point Theorem (1971), Scott, Foresman & Co: Scott, Foresman & Co Glenview, IL · Zbl 0216.19601
[28] Brunovsky, P., On one parameter families of diffeomorphisms I and II, Comment. Math. Univ. Carolin., 12, 765-784 (1970) · Zbl 0202.23104
[29] Casson, A.; Bleiler, S., Automorphisms of Surfaces after Nielsen and Thurston, (London Math. Soc. Stud. Texts, 9 (1988), Cambridge Univ. Press: Cambridge Univ. Press Cambridge) · Zbl 0649.57008
[30] Cornfield, I. P.; Fomin, S. V.; Sinai, Ya. G., Ergodic Theory (1982), Springer: Springer Berlin · Zbl 0493.28007
[31] de Melo, W.; van Strien, J., One-Dimensional Dynamics (1993), Springer: Springer Berlin · Zbl 0791.58003
[32] Devaney, R., An Introduction to Chaotic Dynamical Systems (1989), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0695.58002
[33] Eilenberg, S., Sur les transformations periodiques de la surface de sphere, Fund. Math., 22, 228-244 (1934) · JFM 60.1228.02
[34] Fadell, E.; Husseini, S., Fixed point theory for non-simply connected manifolds, Topology, 20, 53-92 (1981) · Zbl 0453.55002
[35] Fadell, E.; Husseini, S., The Nielsen number on surfaces, Contemp. Math., 21, 59-98 (1983) · Zbl 0563.55001
[36] Fathi, A., Homotopy stability of pseudo-Anosov diffeomorphisms, Ergod. Theor. Dynam. Sys., 10, 287-294 (1989) · Zbl 0717.58036
[37] Fathi, A.; Lauderbach, F.; Poenaru, V., Travaux de Thurston sur les surfaces, Asterique, 66-67 (1979) · Zbl 0406.00016
[38] Franks, J., Anosov diffeomorphisms, (AMS Proceedings of Symposia in Pure Mathematics XIV (1979), AMS: AMS Providence, RI), 61-93 · Zbl 0207.54304
[39] Franks, J., Knots, links and symbolic dynamics, Ann. Math., 113, 529-552 (1981) · Zbl 0469.58013
[40] Franks, J., Homology and Dynamical Systems, CBMS 49 (1982), AMS: AMS Providence, RI · Zbl 0497.58018
[41] Franks, J., Recurrence and fixed points of surface homeomorphisms, Ergod. Theor. Dynam. Sys., \(8^∗, 99-107 (1988)\) · Zbl 0634.58023
[42] Franks, J., Realizing rotation vectors for torus homeomorphism, Trans. AMS, 311, 107-115 (1989) · Zbl 0664.58028
[43] Franks, J., Geodesics on \(S^2\) and periodic points of annulus diffeomorphisms (1993), Northwestern University, preprint
[44] Franks, J., Rotation vectors and fixed points of area preserving surface diffeomorphisms (1994), Northwestern University, preprint
[45] Franks, J.; Handel, M., Entropy and exponential growth of \(π_1\) in dimension two, Proc. AMS, 102, 753-760 (1988) · Zbl 0644.58016
[46] Franks, J.; Misiurewicz, M., Rotation sets of toral flows, Proc. Amer. Math. Soc., 109, 243-249 (1990) · Zbl 0701.57016
[47] Franks, J.; Misiurewicz, M., Cycles for disk homeomorphisms and thick trees, (McCord, C. K., Contemp. Math., 152 (1993), AMS: AMS Providence, RI), 69-139 · Zbl 0793.58029
[48] Fried, D., Flow equivalence, hyperbolic systems and a new zeta function for flows, Comm. Math. Helv., 57, 237-259 (1982) · Zbl 0503.58026
[49] Fried, D., The geometry of cross sections to flows, Topology, 24, 353-371 (1983) · Zbl 0594.58041
[50] Fried, D., Periodic orbits and twisted coefficients, (Palis, J., Geometric Dynamics, 1007 (1983), Springer: Springer Berlin), 261-293, Lecture Notes in Math. · Zbl 0524.58037
[51] Fried, D., Homological identities for closed orbits, Invent. Math., 71, 419-442 (1983) · Zbl 0512.58023
[52] Fried, D., Growth rate of surface homeomorphisms and flow equivalence, Ergod. Theor. Dynam. Sys., 5, 539-563 (1985) · Zbl 0603.58020
[53] Fried, D., Entropy and twisted cohomology, Topology, 25, 455-470 (1986) · Zbl 0611.58036
[54] Fried, D., Lefschetz formulas for flows, Contemp. Math., 58, 19-69 (1987) · Zbl 0619.58034
[55] Fuller, F. B., The treatment of periodic orbits by methods of fixed point theory, Bull. AMS, 72, 838-840 (1966) · Zbl 0152.40205
[56] Gambaudo, J. M.; Sullivan, D.; Tresser, C., Infinite cascades of braids and smooth dynamical systems, Topology, 33, 85-94 (1994) · Zbl 0803.58046
[57] Gambaudo, J. M.; van Strien, S.; Tresser, C., The periodic orbit structure of orientation preserving diffeomorphisms of \(D^2\) with topological entropy zero, Ann. Inst. H. Poincaré, 49, 335-356 (1989) · Zbl 0701.58030
[58] Gerber, M.; Katok, A., Smooth models of Thurston’s pseudo-Anosov maps, Ann. Sci. Éc. Norm. Sup., 15, 173-204 (1982) · Zbl 0502.58029
[59] Guckenheimer, J.; Holmes, P., Nonlinear Oscillations, (Dynamical Systems, and Bifurcations of Vector Fields (1983), Springer: Springer Berlin) · Zbl 0515.34001
[60] Hall, G. R., A topological theorem of a theorem of Mather’s on twist maps, Ergod. Theor. Dynam. Sys., 4, 585-603 (1984) · Zbl 0564.58019
[61] Hall, T., Unremovable periodic orbits of homeomorphisms, Math. Proc. Camb. Phil. Soc., 110, 523-531 (1991) · Zbl 0751.58031
[62] Hall, T., Weak universality in two-dimensional transitions to chaos, Phys. Rev. Lett., 71, 58-61 (1993)
[63] Hall, T., Fat one-dimensional representatives of pseudo-Anosov isotopy classes with minimal periodic orbit structure, Nonlinearity, 7, 367-384 (1994) · Zbl 0913.58048
[64] Hall, T., The creation of horseshoes, Nonlinearity, 7, 861-924 (1994) · Zbl 0806.58015
[65] Handel, M., The entropy of orientation reversing homeomorphisms of surfaces, Topology, 21, 291-296 (1982) · Zbl 0502.58028
[66] Handel, M., Zero entropy surface homeomorphisms (1988), C.U.N.Y, preprint
[67] Handel, M., Global shadowing of pseudo-Anosov homeomorphisms, Ergod. Theor. Dynam. Sys., 5, 373-377 (1985) · Zbl 0576.58025
[68] Handel, M., Entropy and semi-conjugacy in dimension two, Ergod. Theor. Dynam. Sys., 9, 585-596 (1989) · Zbl 0675.58025
[69] Handel, M., Approximating entropy by exponential growth of \(π_1\) in dimension two (1989), C.U.N.Y, preprint
[70] Handel, M., The rotation set of a homeomorphism of the annulus is closed, Comm. Math. Phys., 127, 339-349 (1990) · Zbl 0725.54032
[71] Hiraide, K., Expansive homeomorphisms of compact surfaces are pseudo-Anosov, Osaka J. Math., 27, 117-162 (1990) · Zbl 0713.58042
[72] Huang, H.-H.; Jiang, B., Braids and periodic solutions, (Jiang, B., Topological Fixed Point Theory and Applications, 1411 (1989), Springer: Springer Berlin), 107-123, Lecture Notes in Math. · Zbl 0693.55002
[73] Ivanov, N. V., Entropy and Nielsen numbers, Soviet Math. Dokl., 26, 63-66 (1982) · Zbl 0515.54016
[74] Ivanov, N. V., Nielsen numbers of self-maps of surfaces, J. Soviet Math., 26, 1636-1641 (1984) · Zbl 0544.55001
[75] Ivanov, N. V., Subgroups of Teichmuller modular groups, (Translations of Mathematical Monographs, Vol. 115 (1992), AMS: AMS Providence, RI) · Zbl 0629.57006
[76] Jiang, B., Fixed point classes from a differentiable viewpoint, (Faddel, E.; Fournier, G., Fixed Point Theory, 886 (1981), Springer: Springer Berlin), 163-170, Lecture Notes in Math. · Zbl 0482.57014
[77] Jiang, B., Fixed points of surface homeomorphisms, Bull. AMS, 5, 176-178 (1981) · Zbl 0479.55003
[78] Jiang, B., lectures on Nielsen Fixed Point Theory, (Contemp. Math., 14 (1983), AMS: AMS Providence, RI) · Zbl 0512.55003
[79] Jiang, B., Fixed points and braids I, Invent. Math., 75, 69-74 (1984) · Zbl 0565.55005
[80] Jiang, B., Fixed points and braids II, Math. Ann., 272, 249-256 (1985) · Zbl 0617.55001
[81] Jiang, B., A characterization of fixed point classes, Contemp. Math., 72, 157-160 (1988) · Zbl 0648.55003
[82] Jiang, B., Estimation of the number of periodic orbits (1994), Peking University, preprint
[83] Jiang, B.; Guo, J., Fixed points of surface diffeomorphisms, Pacific J. Math., 160, 67-89 (1993) · Zbl 0829.55001
[84] Katok, A., Bernoulli diffeomorphisms on surfaces, Ann. Math., 110, 529-547 (1979) · Zbl 0435.58021
[85] Katok, A., Lyapunov expononents, entropy and periodic orbits for diffeomorphisms, Publ. Math. IHES, 51, 137-173 (1980) · Zbl 0445.58015
[86] Katok, A., Nonuniform hyperbolicity and the structure of smooth dynamical systems, Proc. Internat. Congress of Math., 1245-1253 (1983), Warsaw · Zbl 0563.58016
[87] Kerekjarto, B., Sur la structure des transformations topologiques des surfaces en elles-mêmes, Enseign. Math., 35, 297-316 (1936) · Zbl 0016.04403
[88] Kwapisz, J., Every convex polygon with rational vertices is a rotation set, Ergod. Theor. Dynam. Sys., 12, 333-339 (1992) · Zbl 0774.58022
[89] Kwapisz, J., A nonpolygonal rotation set (1994), SUNY at Stony Brook
[90] Le Calvez, P., Propriétés dynamiques des difféomorphismes de l’anneau et du tore, Astérisque, 204 (1991) · Zbl 0784.58033
[91] Lewowicz, J., Expansive homeomorphisms of surfaces, Bol. Soc. Bras. Mat., 20, 113-133 (1989) · Zbl 0753.58022
[92] Lewowicz, J.; de Sá, L., Analytic models of pseudo-Anosov maps, Ergod. Theor. Dynam. Sys., 6, 385-392 (1986) · Zbl 0608.58035
[93] Llibre, J.; MacKay, R. S., Rotation vectors and entropy for homeomorphisms of the torus isotopic to the identity, Ergod. Theor. Dynam. Sys., 11, 115-128 (1991) · Zbl 0699.58049
[94] Los, J., Pseudo-Anosov maps and invariant train tracks in the disc: a finite algorithm, Proc. London Math. Soc., 66, 400-430 (1993) · Zbl 0788.58039
[95] Los, J., On the forcing relation for surface homeomorphisms (1994), Université de Nice Sophia-Antipolis, preprint
[96] Mane, R., Ergodic Theory and Differentiable Dynamics (1987), Springer: Springer Berlin · Zbl 0616.28007
[97] Matsuoka, T., Braids of periodic points and a 2-dimensional analogue of Sharkovskii’s ordering, (Ikegami, G., Dynamical systems and nonlinear oscillations (1986), World Scientific Press), 58-72
[98] Matsuoka, T., The Burau representation of the braid group and the Nielsen-Thurston classification, (McCord, C. K., Contemp. Math., 152 (1993), AMS: AMS Providence, RI), 21-41
[99] (McCord, C. K., Nielsen Theory and Dynamical Systems. Nielsen Theory and Dynamical Systems, Contemp. Math., 152 (1993), AMS: AMS Providence, RI) · Zbl 0780.00035
[100] Meyer, K. R.; Hall, G. R., Introduction to Hamiltonian Dynamical Systems and the \(N\)-Body Problem, (Applied Mathematical Sciences, 90 (1992), Springer: Springer Berlin) · Zbl 0743.70006
[101] Misiurewicz, M., Formalism for studying periodic orbits of one-dimensional maps, (Alsina, S., European Conference on Iteration Theory (1989), World Scientific: World Scientific Singapore), 1-7
[102] Misiurewicz, M.; Ziemian, K., Rotation sets for maps of tori, J. London Math. Soc., 40, 490-506 (1989) · Zbl 0663.58022
[103] Misiurewicz, M.; Ziemian, K., Rotation sets and ergodic measures for torus homeomorphisms, Fund. Math., 137, 45-52 (1991) · Zbl 0739.58033
[104] Newhouse, S., Lectures on dynamical sytems, (Moser, J.; Guckenheimer, J.; Newhouse, S., Dynamical Systems: C.I.M.E. Lectures, Progress in Math., 8 (1980), Birhäuser: Birhäuser Basel), 1-114 · Zbl 0444.58001
[105] Penner, R.; Harer, J., Combinatorics of Train Tracks, (Annals of Math. Studies, 125 (1992), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ) · Zbl 0765.57001
[106] Plytkin, R., Sources and sinks for A-diffeomorphisms, USSR Math. Sb., 23, 233-253 (1974) · Zbl 0324.58013
[107] Pollicott, M., Lectures on Ergodic Theory and Pesin Theory on Compact Manifolds, (London Math. Soc., 180 (1993), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), Lecture Note Series · Zbl 0772.58001
[108] Rees, M., A minimal positive entropy homeomorphism of the two torus, J. London Math. Soc., 23, 537-550 (1981) · Zbl 0451.58022
[110] Ruelle, D., Elements of Differentiable Dynamics and Bifurcation Theory (1989), Academic Press: Academic Press New York · Zbl 0684.58001
[111] Schwartzman, S., Asymptotic cycles, Ann. Math., 66, 270-284 (1957) · Zbl 0207.22603
[112] Sharkovski, A., Coexistence of cycles of a continuous map of a line into itself, Ukrain. Mat. Z., 16, 61-71 (1964) · Zbl 0122.17504
[113] Shub, M., Global stability of dynamical systems (1987), Springer: Springer Berlin · Zbl 0606.58003
[114] Smillie, J., Periodic points of surface homeomorphisms with zero entropy, Ergod. Theor. Dynam. Sys., 3, 315-334 (1983) · Zbl 0536.58026
[115] Stefan, P., A theorem of Sharkovski on the existence of periodic orbits of continuous endomorphisms of the real line, Comm. Math. Phys., 237-248 (1977) · Zbl 0354.54027
[116] Thurston, W., On the geometry and dynamics of diffeomorphisms of surfaces, Bull. AMS, 19, 417-431 (1988) · Zbl 0674.57008
[117] Vivaldi, F., Arithmetic theory of Anosov diffeomorphisms, Proc. Roy. Soc. London Ser. A, 413, 97-107 (1987) · Zbl 0643.58016
[118] Walsh, J., Directions for structurally stable flows via rotation vectors (1994), Oberlin University, preprint
[119] Walters, P., An Introduction to Ergodic Theory, (Graduate Texts in Math., 79 (1982), Springer: Springer Berlin) · Zbl 0301.28011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.