×

Spectral asymptotics for Dirichlet elliptic operators with non-smooth coefficients. (English) Zbl 1171.35443

Summary: We consider a \(2m\)-th-order elliptic operator of divergence form in a domain \(\Omega\) of \(\mathbb{R}^{n}\), assuming that the coefficients are Hölder continuous of exponent \(r \in (0,1]\). For the self-adjoint operator associated with the Dirichlet boundary condition we improve the asymptotic formula of the spectral function \(e(\tau^{2m},x,y)\) for \(x=y\) to obtain the remainder estimate \(O(\tau^{n-\theta}+\text{dist}(x,\partial\Omega)^{-1}\tau^{n-1})\) with any \(\theta \in (0,r)\), using the \(L^{p}\) theory of elliptic operators of divergence form. We also show that the spectral function is in \(C^{m-1,1-\varepsilon}\) with respect to \((x,y)\) for any small \(\varepsilon > 0\). These results extend those for the whole space \(\mathbb{R}^{n}\) obtained by Y. Miyazaki [J. Funct. Anal. 214, No. 1, 132–154 (2004; Zbl 1066.35065)] to the case of a domain.

MSC:

35P20 Asymptotic distributions of eigenvalues in context of PDEs

Citations:

Zbl 1066.35065

References:

[1] R.A. Adams: Sobolev Spaces, Academic Press, New York, 1975.
[2] R. Beals: Asymptotic behavior of the Green’s function and spectral function of an elliptic operator , J. Functional Analysis 5 (1970), 484–503. · Zbl 0195.11401 · doi:10.1016/0022-1236(70)90021-2
[3] M. Bronstein and V. Ivrii: Sharp spectral asymptotics for operators with irregular coefficients I, Pushing the limits, Comm. Partial Differential Equations 28 (2003), 83–102. · Zbl 1027.58019 · doi:10.1081/PDE-120019375
[4] J. Brüning: Zur Abschätzung der Spektralfunktion elliptischer Operatoren , Math. Z. 137 (1974), 75–85. · Zbl 0268.47053 · doi:10.1007/BF01213936
[5] L. Hörmander: On the Riesz means of spectral functions and eigenfunction expansions for elliptic differential operators ; in Some Recent Advances in the Basic Sciences 2 (Proc. Annual Sci. Conf., Belfer Grad. School Sci., Yeshiva Univ., New York, 1965–1966), Belfer Graduate School of Science, Yeshiva Univ., New York, 1969, 155–202.
[6] V. Ivrii: Precise Spectral Asymptotics for Elliptic Operators Acting in Fiberings over Manifolds with Boundary, Lecture Notes in Math. 1100 , Springer, Berlin, 1984. · Zbl 0565.35002 · doi:10.1007/BFb0072205
[7] V. Ivrii: Microlocal Analysis and Precise Spectral Asymptotics, Springer, Berlin, 1998 · Zbl 0906.35003
[8] V. Ivrii: Sharp spectral asymptotics for operators with irregular coefficients , Internat. Math. Res. Notices (2000), 1155–1166. · Zbl 1123.35339 · doi:10.1155/S107379280000057X
[9] V. Ivrii: Sharp spectral asymptotics for operators with irregular coefficients II, Domains with boundaries and degenerations , Comm. Partial Differential Equations 28 (2003), 103–128. · Zbl 1027.58020 · doi:10.1081/PDE-120019376
[10] K. Maruo and H. Tanabe: On the asymptotic distribution of eigenvalues of operators associated with strongly elliptic sesquilinear forms , Osaka J. Math. 8 (1971), 323–345. · Zbl 0227.35073
[11] K. Maruo: Asymptotic distribution of eigenvalues of non-symmetric operators associated with strongly elliptic sesquilinear forms , Osaka J. Math. 9 (1972), 547–560. · Zbl 0251.35077
[12] G. Métivier: Valeurs propres de problèmes aux limites elliptiques irrégulières , Bull. Soc. Math. France Suppl. Mém. 51 – 52 (1977), 125–219. · Zbl 0401.35088
[13] G. Métivier: Estimation du reste en théorie spectrale , Conference on linear partial and pseudodifferential operators (Torino, 1982), Rend. Sem. Mat. Univ. Politec. Torino (1983) 157–180. · Zbl 0542.35055
[14] Y. Miyazaki: A sharp asymptotic remainder estimates for the eigenvalues of operators associated with strongly elliptic sesquilinear forms , Japan. J. Math. (N.S.) 15 (1989), 65–97. · Zbl 0703.35137
[15] Y. Miyazaki: The eigenvalue distribution of elliptic operators with Hölder continuous coefficients , Osaka J. Math. 28 (1991), 935–973. · Zbl 0754.35101
[16] Y. Miyazaki: The eigenvalue distribution of elliptic operators with Hölder continuous coefficients II, Osaka J. Math. 30 (1993), 267–301. · Zbl 0799.35173
[17] Y. Miyazaki: Asymptotic behavior of spectral functions of elliptic operators with Hölder continuous coefficients , J. Math. Soc. Japan 49 (1997), 539–563. · Zbl 0901.35064 · doi:10.2969/jmsj/04930539
[18] Y. Miyazaki: The \(L^ p\) resolvents of elliptic operators with uniformly continuous coefficients , J. Differential Equations 188 (2003), 555–568. · Zbl 1057.47052 · doi:10.1016/S0022-0396(02)00109-2
[19] Y. Miyazaki: Asymptotic behavior of spectral functions for elliptic operators with non-smooth coefficients , J. Funct. Anal. 214 (2004), 132–154. · Zbl 1066.35065 · doi:10.1016/j.jfa.2003.12.003
[20] Y. Miyazaki: The \(L^ p\) resolvents of second-order elliptic operators of divergence form under the Dirichlet condition , J. Differential Equations 206 (2004), 353–372. · Zbl 1274.35075 · doi:10.1016/j.jde.2004.05.011
[21] Y. Miyazaki: The \(L^ p\) theory of divergence form elliptic operators under the Dirichlet condition , J. Differential Equations 215 (2005), 320–356. · Zbl 1081.47050 · doi:10.1016/j.jde.2004.10.014
[22] Y. Miyazaki: Higher order elliptic operators of divergence form in \(C^{1}\) or Lipschitz domains , J. Differential Equations 230 (2006), 174–195, Corrigendum, J. Differential Equations 244 (2008), 2404–2405. · Zbl 1143.35023 · doi:10.1016/j.jde.2006.07.024
[23] Yu. Safarov and D. Vassiliev: The Asymptotic Distribution of Eigenvalues of Partial Differential Operators, Translations of Mathematical Monographs 155 , Amer. Math. Soc., Providence, RI, 1997.
[24] R. Seeley: A sharp asymptotic remainder estimate for the eigenvalues of the Laplacian in a domain of \(\mathbf{R}^{3}\) , Adv. in Math. 29 (1978), 244–269. · Zbl 0382.35043 · doi:10.1016/0001-8708(78)90013-0
[25] H. Tanabe: Functional Analytic Methods for Partial Differential Equations, Monographs and Textbooks in Pure and Applied Mathematics 204 , Marcel Dekker, New York, 1997. · Zbl 0867.35003
[26] J. Tsujimoto: On the remainder estimates of asymptotic formulas for eigenvalues of operators associated with strongly elliptic sesquilinear forms , J. Math. Soc. Japan 33 (1981), 557–569. · Zbl 0463.35062 · doi:10.2969/jmsj/03340557
[27] J. Tsujimoto: On the asymptotic behavior of spectral functions of elliptic operators , Japan. J. Math. (N.S.) 8 (1982), 177–210. · Zbl 0533.35068
[28] L. Zielinski: Asymptotic distribution of eigenvalues for some elliptic operators with simple remainder estimates , J. Operator Theory 39 (1998), 249–282. · Zbl 0991.35056
[29] L. Zielinski: Asymptotic distribution of eigenvalues for elliptic boundary value problems , Asymptot. Anal. 16 (1998), 181–201. · Zbl 0945.35068
[30] L. Zielinski: Asymptotic distribution of eigenvalues for some elliptic operators with intermediate remainder estimate , Asymptot. Anal. 17 (1998), 93–120. · Zbl 0936.35122
[31] L. Zielinski: Sharp spectral asymptotics and Weyl formula for elliptic operators with non-smooth coefficients , Math. Phys. Anal. Geom. 2 (1999), 291–321. · Zbl 0952.35084 · doi:10.1023/A:1009881332028
[32] L. Zielinski: Sharp spectral asymptotics and Weyl formula for elliptic operators with non-smooth coefficients II, Colloq. Math. 92 (2002), 1–18. · Zbl 1002.35092 · doi:10.4064/cm92-1-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.