×

Modeling excitable cells with the EMI equations: spectral analysis and iterative solution strategy. (English) Zbl 1533.65045

The EMI (Extra, Intra, Membrane) model, also known as the cell-by-cell model, is a numerical building block in computational electrophysiology, typically used, at a cellular scale, to simulate excitable tissues. For example, in homogenized models, such as the mono and bidomain equations, the EMI model resolves cells morphologies, enabling detailed biological simulations. For example, inhomogeneities in ionic channels along the membrane, as observed in myelinated neuronal axons, can be described within the EMI model. EMI models have many applications for example in computational cardiology and neuroscience, where spreading excitation by electrical signalling plays a crucial role.
In the interesting paper under review, the authors are interested in solving large linear systems stemming from the EMI. After setting the related systems of partial differential equations equipped with proper boundary conditions, the authors provide their finite element discretizations and focus on the resulting large linear systems. They provide a relatively complete spectral analysis using tools from the theory of Generalized Locally Toeplitz matrix sequences. The spectral information obtained is then used for designing appropriate preconditioned Krylov solvers. Through numerical experiments, the authors illustrate that the presented solution strategy is robust with respect to problem and discretization parameters, efficient and scalable.
The paper is well written with a good set of references.

MSC:

65F08 Preconditioners for iterative methods
15B05 Toeplitz, Cauchy, and related matrices
62F10 Point estimation
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

Software:

hypre; SyFi; FEniCS

References:

[1] Abdellah, M.; Cantero, JJG; Guerrero, NR; Foni, A.; Coggan, JS; Calì, C.; Agus, M.; Zisis, E.; Keller, D.; Hadwiger, M., Ultraliser: a framework for creating multiscale, high-fidelity and geometrically realistic 3D models for in silico neuroscience, Brief. Bioinform., 24, 1, bbac491 (2023) · doi:10.1093/bib/bbac491
[2] Alnæs, M.; Blechta, J.; Hake, J.; Johansson, A.; Kehlet, B.; Logg, A.; Richardson, C.; Ring, J.; Rognes, ME; Wells, GN, The FEniCS project version 1.5, Arch. Numer. Softw., 3, 100, 9-23 (2015)
[3] Axelsson, O.; Karátson, J.; Magoulès, F., Robust superlinear Krylov convergence for complex noncoercive compact-equivalent operator preconditioners, SIAM J. Numer. Anal., 61, 2, 1057-1079 (2023) · Zbl 1515.65073 · doi:10.1137/21M1466955
[4] Axelsson, O.; Lindskog, G., On the rate of convergence of the preconditioned conjugate gradient method, Numer. Math., 48, 499-523 (1986) · Zbl 0564.65017 · doi:10.1007/BF01389448
[5] Barbarino, G., A systematic approach to reduced GLT, BIT Numer. Math., 62, 3, 681-743 (2022) · Zbl 1495.15035 · doi:10.1007/s10543-021-00896-7
[6] Barbarino, G.; Bianchi, D.; Garoni, C., Constructive approach to the monotone rearrangement of functions, Expos. Math., 40, 1, 155-175 (2022) · Zbl 1506.40003 · doi:10.1016/j.exmath.2021.10.004
[7] Barbarino, G.; Garoni, C.; Serra-Capizzano, S., Block generalized locally Toeplitz sequences: theory and applications in the multidimensional case, Electron. Trans. Numer. Anal., 53, 113-216 (2020) · Zbl 1434.65033 · doi:10.1553/etna_vol53s113
[8] Barbarino, G.; Garoni, C.; Serra-Capizzano, S., Block generalized locally Toeplitz sequences: theory and applications in the unidimensional case, Electron. Trans. Numer. Anal., 53, 28-112 (2020) · Zbl 1434.65032 · doi:10.1553/etna_vol53s28
[9] Benedusi, P.; Ferrari, P.; Garoni, C.; Krause, R.; Serra-Capizzano, S., Fast parallel solver for the space-time IgA-DG discretization of the diffusion equation, J. Sci. Comput., 89, 1, 20 (2021) · Zbl 1480.65247 · doi:10.1007/s10915-021-01567-z
[10] Benedusi, P.; Garoni, C.; Krause, R.; Li, X.; Serra-Capizzano, S., Space-time FE-DG discretization of the anisotropic diffusion equation in any dimension: the spectral symbol, SIAM J. Matrix Anal. Appl., 39, 3, 1383-1420 (2018) · Zbl 1507.65176 · doi:10.1137/17M113527X
[11] Bhatia, R., Matrix Analysis. Graduate Texts in Mathematics (1997), New York: Springer, New York · doi:10.1007/978-1-4612-0653-8
[12] Black, JA; Kocsis, JD; Waxman, SG, Ion channel organization of the myelinated fiber, Trends Neurosci., 13, 2, 48-54 (1990) · doi:10.1016/0166-2236(90)90068-L
[13] Buccino, AP; Kuchta, M.; Schreiner, J.; Mardal, KA, Improving Neural Simulations with the EMI Model, 87-98 (2021), Berlin: Springer, Berlin · Zbl 1470.92049
[14] Dorostkar, A.; Neytcheva, M.; Serra-Capizzano, S., Spectral analysis of coupled PDEs and of their Schur complements via generalized locally Toeplitz sequences in 2D, Comput. Methods Appl. Mech. Eng., 309, 74-105 (2016) · Zbl 1439.65138 · doi:10.1016/j.cma.2016.05.042
[15] Ekström, SE; Serra-Capizzano, S., Eigenvalues and eigenvectors of banded Toeplitz matrices and the related symbols, Numer. Linear Algebra Appl., 25, 5 (2018) · Zbl 1513.65095 · doi:10.1002/nla.2137
[16] Ellingsrud, AJ; Daversin-Catty, C.; Rognes, ME, A Cell-Based Model for Ionic Electrodiffusion in Excitable Tissue (2021), Berlin: Springer, Berlin · Zbl 1470.92104 · doi:10.1007/978-3-030-61157-6_2
[17] Ellingsrud, AJ; Solbrå, A.; Einevoll, GT; Halnes, G.; Rognes, ME, Finite element simulation of ionic electrodiffusion in cellular geometries, Front. Neuroinform., 14, 11 (2020) · doi:10.3389/fninf.2020.00011
[18] Falgout, R.D., Yang, U.M.: Hypre: a library of high performance preconditioners. In: Computational Science-ICCS 2002: International Conference Amsterdam, The Netherlands, April 21-24, 2002 Proceedings, Part III, pp. 632-641. Springer (2002) · Zbl 1056.65046
[19] Garoni, C.; Serra-Capizzano, S., Generalized Locally Toeplitz Sequences: Theory and Applications (2017), Berlin: Springer, Berlin · Zbl 1376.15002 · doi:10.1007/978-3-319-53679-8
[20] Garoni, C.; Serra-Capizzano, S., Generalized Locally Toeplitz Sequences: Theory and Applications (2018), Berlin: Springer, Berlin · Zbl 1448.47004 · doi:10.1007/978-3-030-02233-4
[21] Garoni, C.; Serra-Capizzano, S.; Sesana, D., Spectral analysis and spectral symbol of \(d\)-variate \(\mathbb{Q}_{\textbf{p} }\) Lagrangian FEM stiffness matrices, SIAM J. Matrix Anal. Appl., 36, 3, 1100-1128 (2015) · Zbl 1321.65173 · doi:10.1137/140976480
[22] Garoni, C.; Speleers, H.; Ekström, SE; Reali, A.; Serra-Capizzano, S.; Hughes, TJR, Symbol-based analysis of finite element and isogeometric B-spline discretizations of eigenvalue problems: exposition and review, Arch. Comput. Methods Eng., 26, 5, 1639-1690 (2019) · doi:10.1007/s11831-018-9295-y
[23] Huynh, N.M.M., Chegini, F., Pavarino, L.F., Weiser, M., Scacchi, S.: Convergence analysis of BDDCpreconditioners for hybrid DG discretizations of the cardiac cell-by-cell model. arXiv preprint arXiv:2212.12295 (2022) · Zbl 1527.65138
[24] Jæger, KH; Edwards, AG; Giles, WR; Tveito, A., From millimeters to micrometers; re-introducing myocytes in models of cardiac electrophysiology, Front. Physiol., 12 (2021) · doi:10.3389/fphys.2021.763584
[25] Jæger, KH; Hustad, KG; Cai, X.; Tveito, A., Efficient numerical solution of the EMI model representing the extracellular space (E), cell membrane (M) and intracellular space (I) of a collection of cardiac cells, Front. Phys., 8 (2021) · doi:10.3389/fphy.2020.579461
[26] Logg, A.; Mardal, KA; Wells, G., Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book (2012), Berlin: Springer, Berlin · Zbl 1247.65105 · doi:10.1007/978-3-642-23099-8
[27] Mazza, M.; Ratnani, A.; Serra-Capizzano, S., Spectral analysis and spectral symbol for the 2D curl-curl (stabilized) operator with applications to the related iterative solutions, Math. Comput., 88, 317, 1155-1188 (2019) · Zbl 1455.65215 · doi:10.1090/mcom/3366
[28] Mazza, M.; Semplice, M.; Serra-Capizzano, S.; Travaglia, E., A matrix-theoretic spectral analysis of incompressible Navier-Stokes staggered DG approximations and a related spectrally based preconditioning approach, Numer. Math., 149, 4, 933-971 (2021) · Zbl 1483.65047 · doi:10.1007/s00211-021-01247-y
[29] Mori, Y.; Peskin, C., A numerical method for cellular electrophysiology based on the electrodiffusion equations with internal boundary conditions at membranes, Commun. Appl. Math. Comput. Sci., 4, 1, 85-134 (2009) · Zbl 1182.92024 · doi:10.2140/camcos.2009.4.85
[30] Serra-Capizzano, S.; Tablino-Possio, C., Multigrid methods for multilevel circulant matrices, SIAM J. Sci. Comput., 26, 1, 55-85 (2004) · Zbl 1079.65033 · doi:10.1137/S1064827501388509
[31] Serra-Capizzano, S.; Tablino-Possio, C., Two-grid methods for Hermitian positive definite linear systems connected with an order relation, Calcolo, 51, 2, 261-285 (2014) · Zbl 1311.65034 · doi:10.1007/s10092-013-0081-9
[32] de Souza, G.R., Krause, R., Pezzuto, S.: Boundary integral formulation of the cell-by-cell model of cardiac electrophysiology. arXiv preprint arXiv:2302.05281 (2023)
[33] Tilli, P., A note on the spectral distribution of Toeplitz matrices, Linear Multilinear Algebra, 45, 2-3, 147-159 (1998) · Zbl 0951.65033 · doi:10.1080/03081089808818584
[34] Tveito, A.; Jæger, KH; Kuchta, M.; Mardal, KA; Rognes, ME, A cell-based framework for numerical modeling of electrical conduction in cardiac tissue, Front. Phys., 5, 48 (2017) · doi:10.3389/fphy.2017.00048
[35] Tveito, A.; Mardal, KA; Rognes, ME, Modeling Excitable Tissue: The EMI Framework (2021), Berlin: Springer, Berlin · Zbl 1467.92008 · doi:10.1007/978-3-030-61157-6
[36] Tyrtyshnikov, EE, A unifying approach to some old and new theorems on distribution and clustering, Linear Algebra Appl., 232, 1-43 (1996) · Zbl 0841.15006 · doi:10.1016/0024-3795(94)00025-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.