×

Fine spectral estimates with applications to the optimally fast solution of large FDE linear systems. (English) Zbl 1502.15026

Summary: In the present article we consider a type of matrices stemming in the context of the numerical approximation of distributed order fractional differential equations (FDEs). From one side they could look standard, since they are real, symmetric and positive definite. On the other hand they cause specific difficulties which prevent the successful use of classical tools. In particular the associated matrix-sequence, with respect to the matrix-size, is ill-conditioned and it is such that a generating function does not exists, but we face the problem of dealing with a sequence of generating functions with an intricate expression. Nevertheless, we obtain a real interval where the smallest eigenvalue belongs to, showing also its asymptotic behavior. We observe that the new bounds improve those already present in the literature and give more accurate pieces of spectral information, which are in fact used in the design of fast numerical algorithms for the associated large linear systems, approximating the given distributed order FDEs. Very satisfactory numerical results are presented and critically discussed, while a section with conclusions and open problems ends the current work.

MSC:

15B99 Special matrices
15A18 Eigenvalues, singular values, and eigenvectors
65F10 Iterative numerical methods for linear systems
26A33 Fractional derivatives and integrals

References:

[1] Axelsson, O.; Lindskog, G., On the rate of convergence of the preconditioned conjugate gradient method, Numer. Math., 48, 5, 499-523 (1986) · Zbl 0564.65017 · doi:10.1007/BF01389448
[2] Axelsson, O., Neytcheva, M.: The algebraic multilevel iteration methods-theory and applications. In: Proceedings of the Second International Colloquium on Numerical Analysis, pp. 13-24. VSP, Utrecht (1994) · Zbl 0845.65012
[3] Bogoya, M.; Böttcher, A.; Grudsky, SM; Maximenko, EA, Eigenvalues of Hermitian Toeplitz matrices with smooth simple-loop symbols, J. Math. Anal. Appl., 422, 1308-1334 (2015) · Zbl 1302.65086 · doi:10.1016/j.jmaa.2014.09.057
[4] Bogoya, M.; Böttcher, A.; Grudsky, SM; Maximenko, EA, Eigenvectors of Hermitian Toeplitz matrices with smooth simple-loop symbols, Linear Algebra Appl., 493, 606-637 (2016) · Zbl 1331.47046 · doi:10.1016/j.laa.2015.12.017
[5] Bogoya, M., Grudsky, S.M., Mazza, M., Serra-Capizzano, S.: On the spectrum and asymptotic conditioning of a class of positive definite Toeplitz matrix-sequences, with application to fractional-differential approximations. arXiv:2112.02685 (2021)
[6] Böttcher, A.; Grudsky, SM, On the condition numbers of large semi-definite Toeplitz matrices, Linear Algebra Appl., 279, 1-3, 285-301 (1998) · Zbl 0934.15005 · doi:10.1016/S0024-3795(98)00015-9
[7] Böttcher, A.; Grudsky, SM, Spectral properties of banded Toeplitz matrices (2005), Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA · Zbl 1089.47001 · doi:10.1137/1.9780898717853
[8] Chan, R., Jin, X.: An introduction to iterative Toeplitz solvers. Society for Industrial and Applied Mathematics (SIAM) (2007) · Zbl 1146.65028
[9] Di-Benedetto, F.; Serra-Capizzano, S., A unifying approach to abstract matrix algebra preconditioning, Numer. Math., 82, 1, 57-90 (1999) · Zbl 0930.65050 · doi:10.1007/s002110050411
[10] Donatelli, M.; Garoni, C.; Manni, C.; Serra-Capizzano, S.; Speleers, H., Robust and optimal multi-iterative techniques for IgA Galerkin linear systems, Comput. Methods Appl. Mech. Engrg., 284, 230-264 (2015) · Zbl 1425.65136 · doi:10.1016/j.cma.2014.06.001
[11] Donatelli, M.; Garoni, C.; Manni, C.; Serra-Capizzano, S.; Speleers, H., Symbol-based multigrid methods for Galerkin B-spline isogeometric analysis, SIAM. J. Numer. Anal., 55, 1, 31-62 (2017) · Zbl 1355.65153 · doi:10.1137/140988590
[12] Donatelli, M.; Mazza, M.; Serra-Capizzano, S., Spectral analysis and structure preserving preconditioners for fractional diffusion equations, J. Comput. Phys., 307, 262-279 (2016) · Zbl 1352.65305 · doi:10.1016/j.jcp.2015.11.061
[13] Donatelli, M.; Mazza, M.; Serra-Capizzano, S., Spectral analysis and multigrid methods for finite volume approximations of space-fractional diffusion equations, SIAM J. Sci. Comput., 40, 6, A4007-A4039 (2018) · Zbl 1405.65161 · doi:10.1137/17M115164X
[14] Ervin, V.; Roop, J., Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differ. Equ., 22, 3, 558-576 (2006) · Zbl 1095.65118 · doi:10.1002/num.20112
[15] Fiorentino, G.; Serra-Capizzano, S., Multigrid methods for Toeplitz matrices, Calcolo, 28, 3-4, 283-305 (1992) · Zbl 0778.65021
[16] Garoni, C.; Serra-Capizzano, S., Generalized Locally Toeplitz sequences: Theory and applications (2017), Cham: Springer, Cham · Zbl 1376.15002 · doi:10.1007/978-3-319-53679-8
[17] Hackbusch, W., Multigrid methods and applications, Springer Series in Computational Mathematics (1985), Berlin: Springer, Berlin · Zbl 0577.65118
[18] Hejazi, H.; Moroney, T.; Liu, F., Stability and convergence of a finite volume method for the space fractional advection-dispersion equation, J. Comput. Appl. Math., 255, 684-697 (2014) · Zbl 1291.65280 · doi:10.1016/j.cam.2013.06.039
[19] Lin, Z.; Wang, D., A finite element formulation preserving symmetric and banded diffusion stiffness matrix characteristics for fractional differential equations, Comput. Mech., 62, 2, 185-211 (2018) · Zbl 1446.35250 · doi:10.1007/s00466-017-1492-2
[20] Mao, Z.; Karniadakis, G., A spectral method (of exponential convergence) for singular solutions of the diffusion equation with general two-sided fractional derivative, SIAM J. Numer. Anal., 56, 1, 24-49 (2018) · Zbl 1422.65428 · doi:10.1137/16M1103622
[21] Mazza, M.; Serra-Capizzano, S.; Usman, M., Symbol-based preconditioning for Riesz distributed-order space-fractional diffusion equations, Electr. Trans. Num. Anal., 54, 499-513 (2021) · Zbl 1501.65042 · doi:10.1553/etna_vol54s499
[22] Meerschaert, M.; Tadjeran, C., Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math., 172, 1, 65-77 (2004) · Zbl 1126.76346 · doi:10.1016/j.cam.2004.01.033
[23] Ng, M.: Iterative methods for Toeplitz systems. Oxford University Press (2004) · Zbl 1059.65031
[24] Noutsos, D.; Serra-Capizzano, S.; Vassalos, P., Matrix algebra preconditioners for multilevel Toeplitz systems do not insure optimal convergence rate, Theoret. Comput. Sci., 315, 2-3, 557-579 (2004) · Zbl 1059.65041 · doi:10.1016/j.tcs.2004.01.007
[25] Pedas, A.; Tamme, E., On the convergence of spline collocation methods for solving fractional differential equations, J. Comput. Appl. Math., 235, 12, 3502-3514 (2011) · Zbl 1217.65154 · doi:10.1016/j.cam.2010.10.054
[26] Serra-Capizzano, S., New PCG based algorithms for the solution of Hermitian Toeplitz systems, Calcolo, 32, 53-176 (1995) · Zbl 0882.65019
[27] Serra-Capizzano, S., On the extreme eigenvalues of Hermitian (block) Toeplitz matrices, Linear Algebra Appl., 270, 109-129 (1998) · Zbl 0892.15014 · doi:10.1016/S0024-3795(97)00231-0
[28] Serra-Capizzano, S., A Korovkin-type theory for finite Toeplitz operators via matrix algebras, Numer. Math., 82, 1, 117-142 (1999) · Zbl 0930.65024 · doi:10.1007/s002110050413
[29] Serra-Capizzano, S., The rate of convergence of Toeplitz based PCG methods for second order nonlinear boundary value problems, Numer. Math., 81, 3, 461-495 (1999) · Zbl 0918.65059 · doi:10.1007/s002110050400
[30] Serra-Capizzano, S., Toeplitz preconditioners constructed from linear approximation processes, SIAM J. Matrix Anal. Appl., 20, 2, 446-465 (1999) · Zbl 0919.65031 · doi:10.1137/S0895479897316904
[31] Serra-Capizzano, S., Convergence analysis of two-grid methods for elliptic Toeplitz and PDEs matrix-sequences, Numer. Math., 92, 3, 433-465 (2002) · Zbl 1013.65026 · doi:10.1007/s002110100331
[32] Serra-Capizzano, S.: Matrix algebra preconditioners for multilevel Toeplitz matrices are not superlinear. Special issue on structured and infinite systems of linear equations. Linear Algebra Appl. 343/344, 303-319 (2002) · Zbl 1001.65041
[33] Serra-Capizzano, S.; Tyrtyshnikov, E., Any circulant-like preconditioner for multilevel matrices is not superlinear, SIAM J. Matrix Anal. Appl., 21, 2, 431-39 (1999) · Zbl 0952.65037 · doi:10.1137/S0895479897331941
[34] Tian, W.; Zhou, H.; Deng, W., A class of second order difference approximations for solving space fractional diffusion equations, Math. Comput., 84, 294, 1703-1727 (2015) · Zbl 1318.65058 · doi:10.1090/S0025-5718-2015-02917-2
[35] Wang, H.; Du, N., A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations, J. Comput. Phys., 240, 49-57 (2013) · Zbl 1287.65100 · doi:10.1016/j.jcp.2012.07.045
[36] Xu, K., Darve, E.: Isogeometric collocation method for the fractional Laplacian in the 2D bounded domain. Computer Methods in Applied Mechanics and Engineering 364, 112,936 (2020) · Zbl 1442.65411
[37] Zeng, F.; Mao, Z.; Karniadakis, G., A generalized spectral collocation method with tunable accuracy for fractional differential equations with end-point singularities, SIAM J. Sci. Comput., 39, 1, A360-A383 (2017) · Zbl 1431.65193 · doi:10.1137/16M1076083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.