×

Homotopy coherent centers versus centers of homotopy categories. (English) Zbl 1411.55012

Kitchloo, Nitya (ed.) et al., New directions in homotopy theory. Second Mid-Atlantic Topology Conference, Johns Hopkins University, Baltimore, MD, USA, March 12–13, 2016. Proceedings. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 707, 121-142 (2018).
The center of a small category \(\mathbb{C}\) is the (necessarily commutative) endomorphism monoid of its identity functor – equivalently, the monoid of natural operations on the objects of \(\mathbb{C}\). When \(\mathbb{C}\) is simplicially enriched, it has a simplicial (strict) center \(Z(\mathbb{C})\) (defined as a certain equalizer), which is a generalized Eilenberg-Mac Lane space. However, the more natural (homotopy-invariant) notion is the homotopy coherent center \(\mathbb{Z}(\mathbb{C})\), defined as the corresponding homotopy limit: this is essentially the space of natural transformations \(\Phi\) of the identity, up to coherently chosen homotopies \(\Phi_{y}f\sim f\Phi_{x}\) for each \(f:x\to y\) in \(\mathbb{C}\), higher homotopies for composites \(gf\) in \(\mathbb{C}\), and so on. The homotopy coherent center is no longer a strict monoid, but the author shows that it does have a homotopy commutative \(A_{\infty}\)-structure.
When \(\mathbb{C}=G\) is a simplicial group, \(\mathbb{Z}(G)\) is just the homotopy fixed points of the action of \(G\) on itself by conjugation (equivalent to \(\Omega\operatorname{map}(BG,BG)_{\mathrm{Id}}\)). Thus even though in general we would not expect the natural map \(Z(\mathbb{C})\to\mathbb{Z}(\mathbb{C})\) (from the limit to the homotopy limit) to be an equivalence, in the special case when \(G\) is a compact Lie group this map induces an isomorphism in \(\mathbb{F}_p\)-homology, by a theorem of W. G. Dwyer and C. W. Wilkerson [Contemp. Math. 181, 119–157 (1995; Zbl 0828.55009)].
Finally, the author describes an obstruction theory for deciding whether the natural map \(\mathbb{Z}(\mathbb{C})\to\pi_{0}\mathbb{Z}(\mathbb{C})\to\pi_{0}\mathbb{C}=:Z(\mathrm{Ho}\mathbb{C})\) is surjective. In the special case when \(\mathbb{C}\) is a simplicial groupoid (correpsonding to a topological space \(X\) with \(\mathbb{C}=GX\) for the Dwyer-Kan \(G\)-functor), \(\mathrm{Ho}\mathbb{C}\) is the fundamental groupoid \(\Pi_{1}X\), and \(\mathbb{Z}(\mathbb{C})\) is just \(\Omega\operatorname{map}(X,X)_{\mathrm{Id}}\). Thus classical results on self-maps of spheres yield examples where this second natural map is not injective.
For the entire collection see [Zbl 1394.55002].

MSC:

55U40 Topological categories, foundations of homotopy theory
18G40 Spectral sequences, hypercohomology
18G50 Nonabelian homological algebra (category-theoretic aspects)
55S35 Obstruction theory in algebraic topology

Citations:

Zbl 0828.55009

References:

[1] Adams, J. F., On the non-existence of elements of Hopf invariant one, Ann. of Math. (2), 72, 20-104 (1960) · Zbl 0096.17404 · doi:10.2307/1970147
[2] Barratt, M. G.; Jones, J. D. S.; Mahowald, M. E., The Kervaire invariant problem. Proceedings of the Northwestern Homotopy Theory Conference, Evanston, Ill., 1982, Contemp. Math. 19, 9-22 (1983), Amer. Math. Soc., Providence, RI · Zbl 0528.55010 · doi:10.1090/conm/019/711039
[3] Bass, Hyman, Algebraic \(K\)-theory, xx+762 pp. (1968), W. A. Benjamin, Inc., New York-Amsterdam · Zbl 0174.30302
[4] Batanin, Michael; Markl, Martin, Centers and homotopy centers in enriched monoidal categories, Adv. Math., 230, 4-6, 1811-1858 (2012) · Zbl 1279.18004 · doi:10.1016/j.aim.2012.04.011
[5] Batanin, Michael; Markl, Martin, Operadic categories and duoidal Deligne’s conjecture, Adv. Math., 285, 1630-1687 (2015) · Zbl 1360.18009 · doi:10.1016/j.aim.2015.07.008
[6] Bergner, Julia E., A model category structure on the category of simplicial categories, Trans. Amer. Math. Soc., 359, 5, 2043-2058 (2007) · Zbl 1114.18006 · doi:10.1090/S0002-9947-06-03987-0
[7] Bernstein, J. N., Le “centre” de Bernstein. Representations of reductive groups over a local field, Travaux en Cours, 1-32 (1984), Hermann, Paris · Zbl 0544.00007
[8] B\`“okstedt, M.; Hsiang, W. C.; Madsen, I., The cyclotomic trace and algebraic \(K\)-theory of spaces, Invent. Math., 111, 3, 465-539 (1993) · Zbl 0804.55004 · doi:10.1007/BF01231296
[9] Bousfield, A. K., Homotopy spectral sequences and obstructions, Israel J. Math., 66, 1-3, 54-104 (1989) · Zbl 0677.55020 · doi:10.1007/BF02765886
[10] Bousfield, A. K.; Kan, D. M., Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, v+348 pp. (1972), Springer-Verlag, Berlin-New York · Zbl 0259.55004
[11] Burghelea, D.; Fiedorowicz, Z., Cyclic homology and algebraic \(K\)-theory of spaces. II, Topology, 25, 3, 303-317 (1986) · Zbl 0639.55003 · doi:10.1016/0040-9383(86)90046-7
[12] Carlsson, Gunnar, Segal’s Burnside ring conjecture and the homotopy limit problem. Homotopy theory, Durham, 1985, London Math. Soc. Lecture Note Ser. 117, 6-34 (1987), Cambridge Univ. Press, Cambridge · Zbl 0656.55010
[13] Cordier, Jean-Marc; Porter, Timothy, Categorical aspects of equivariant homotopy, Appl. Categ. Structures, 4, 2-3, 195-212 (1996) · Zbl 0855.18009 · doi:10.1007/BF00122252
[14] Cordier, Jean-Marc; Porter, Timothy, Homotopy coherent category theory, Trans. Amer. Math. Soc., 349, 1, 1-54 (1997) · Zbl 0865.18006 · doi:10.1090/S0002-9947-97-01752-2
[15] Dwyer, W. G., Lie groups and \(p\)-compact groups, Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998). Doc. Math., Extra Vol. II, 433-442 (1998) · Zbl 0912.55005
[16] Dwyer, W. G.; Kan, D. M., Function complexes in homotopical algebra, Topology, 19, 4, 427-440 (1980) · Zbl 0438.55011 · doi:10.1016/0040-9383(80)90025-7
[17] Dwyer, W. G.; Kan, D. M., Homotopy theory and simplicial groupoids, Nederl. Akad. Wetensch. Indag. Math., 46, 4, 379-385 (1984) · Zbl 0559.55023
[18] Dwyer, W. G.; Mislin, G., On the homotopy type of the components of \({\rm map}_*(BS^3, BS^3)\). Algebraic topology, Barcelona, 1986, Lecture Notes in Math. 1298, 82-89 (1987), Springer, Berlin · Zbl 0654.55014 · doi:10.1007/BFb0083001
[19] Dwyer, William G.; Szymik, Markus, Frobenius and the derived centers of algebraic theories, Math. Z., 285, 3-4, 1181-1203 (2017) · Zbl 1372.18003 · doi:10.1007/s00209-016-1744-4
[20] Dwyer, W. G.; Wilkerson, C. W., The center of a \(p\)-compact group. The \v Cech centennial, Boston, MA, 1993, Contemp. Math. 181, 119-157 (1995), Amer. Math. Soc., Providence, RI · Zbl 0828.55009 · doi:10.1090/conm/181/02032
[21] Giraud, Jean, Cohomologie non ab\'elienne, ix+467 pp. (1971), Springer-Verlag, Berlin-New York · Zbl 0226.14011
[22] Goerss, Paul G.; Jardine, John F., Simplicial homotopy theory, Progress in Mathematics 174, xvi+510 pp. (1999), Birkh\`“auser Verlag, Basel · Zbl 0949.55001 · doi:10.1007/978-3-0348-8707-6
[23] Goodwillie, Thomas G., Cyclic homology, derivations, and the free loopspace, Topology, 24, 2, 187-215 (1985) · Zbl 0569.16021 · doi:10.1016/0040-9383(85)90055-2
[24] Gottlieb, D. H., A certain subgroup of the fundamental group, Amer. J. Math., 87, 840-856 (1965) · Zbl 0148.17106 · doi:10.2307/2373248
[25] Grodal, Jesper, The classification of \(p\)-compact groups and homotopical group theory. Proceedings of the International Congress of Mathematicians. Volume II, 973-1001 (2010), Hindustan Book Agency, New Delhi · Zbl 1231.55010
[26] Hansen, Vagn Lundsgaard, The homotopy groups of a space of maps between oriented closed surfaces, Bull. London Math. Soc., 15, 4, 360-364 (1983) · Zbl 0521.55010 · doi:10.1112/blms/15.4.360
[27] Hansen, Vagn Lundsgaard, The space of self-maps on the \(2\)-sphere. Groups of self-equivalences and related topics, Montreal, PQ, 1988, Lecture Notes in Math. 1425, 40-47 (1990), Springer, Berlin · Zbl 0703.55005 · doi:10.1007/BFb0083829
[28] Jackowski, Stefan; McClure, James; Oliver, Bob, Homotopy classification of self-maps of \(BG\) via \(G\)-actions. I, Ann. of Math. (2), 135, 1, 183-226 (1992) · Zbl 0758.55004 · doi:10.2307/2946568
[29] B. Keller. Derived invariance of higher structures on the Hochschild complex. Preprint, 2003.
[30] Kassel, Christian, Quantum groups, Graduate Texts in Mathematics 155, xii+531 pp. (1995), Springer-Verlag, New York · Zbl 0808.17003 · doi:10.1007/978-1-4612-0783-2
[31] Kock, Joachim; To\`“en, Bertrand, Simplicial localization of monoidal structures, and a non-linear version of Deligne”s conjecture, Compos. Math., 141, 1, 253-261 (2005) · Zbl 1074.18006 · doi:10.1112/S0010437X04001009
[32] Lindner, Harald, Center and trace, Arch. Math. (Basel), 35, 5, 476-496 (1980) · Zbl 0453.18007 · doi:10.1007/BF01235372
[33] Mac Lane, Saunders, Categories for the working mathematician, ix+262 pp. (1971), Springer-Verlag, New York-Berlin · Zbl 0232.18001
[34] May, J. Peter, Simplicial objects in algebraic topology, Van Nostrand Mathematical Studies, No. 11, vi+161 pp. (1967), D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London · Zbl 0769.55001
[35] May, J. P., \(E_{\infty}\) spaces, group completions, and permutative categories. New developments in topology (Proc. Sympos. Algebraic Topology, Oxford, 1972), 61-93. London Math. Soc. Lecture Note Ser., No. 11 (1974), Cambridge Univ. Press, London · Zbl 0281.55003
[36] McClure, James E.; Smith, Jeffrey H., A solution of Deligne’s Hochschild cohomology conjecture. Recent progress in homotopy theory, Baltimore, MD, 2000, Contemp. Math. 293, 153-193 (2002), Amer. Math. Soc., Providence, RI · Zbl 1009.18009 · doi:10.1090/conm/293/04948
[37] McClure, James E.; Smith, Jeffrey H., Operads and cosimplicial objects: an introduction. Axiomatic, enriched and motivic homotopy theory, NATO Sci. Ser. II Math. Phys. Chem. 131, 133-171 (2004), Kluwer Acad. Publ., Dordrecht · Zbl 1080.55010 · doi:10.1007/978-94-007-0948-5\_5
[38] McClure, James E.; Smith, Jeffrey H., Cosimplicial objects and little \(n\)-cubes. I, Amer. J. Math., 126, 5, 1109-1153 (2004) · Zbl 1064.55008
[39] Meir, Ehud; Szymik, Markus, Drinfeld centers for bicategories, Doc. Math., 20, 707-735 (2015) · Zbl 1348.18009
[40] Mitchell, Barry, Rings with several objects, Advances in Math., 8, 1-161 (1972) · Zbl 0232.18009 · doi:10.1016/0001-8708(72)90002-3
[41] J.C. Moore. Homotopie des complexes monoidaux, II. Seminaire Henri Cartan, 1955, Exp. 19, 1-7.
[42] M\o ller, J. M.; Notbohm, D., Centers and finite coverings of finite loop spaces, J. Reine Angew. Math., 456, 99-133 (1994) · Zbl 0806.55008
[43] Neumann, Frank; Szymik, Markus, Spectral sequences for Hochschild cohomology and graded centers of derived categories, Selecta Math. (N.S.), 23, 3, 1997-2018 (2017) · Zbl 1390.16009 · doi:10.1007/s00029-017-0331-9
[44] Stasheff, James Dillon, Homotopy associativity of \(H\)-spaces. I, II, Trans. Amer. Math. Soc. 108 (1963), 275-292; ibid., 108, 293-312 (1963) · Zbl 0114.39402
[45] Szymik, Markus, Permutations, power operations, and the center of the category of racks, Comm. Algebra, 46, 1, 230-240 (2018) · Zbl 1396.57024 · doi:10.1080/00927872.2017.1316857
[46] Tamarkin, Dmitry, What do dg-categories form?, Compos. Math., 143, 5, 1335-1358 (2007) · Zbl 1138.18004 · doi:10.1112/S0010437X07002771
[47] Thom, R., L’homologie des espaces fonctionnels. Colloque de topologie alg\'ebrique, Louvain, 1956, 29-39 (1957), Georges Thone, Li\`“ege; Masson & Cie, Paris · Zbl 0077.36301
[48] Thomason, R. W., The homotopy limit problem. Proceedings of the Northwestern Homotopy Theory Conference, Evanston, Ill., 1982, Contemp. Math. 19, 407-419 (1983), Amer. Math. Soc., Providence, R.I. · Zbl 0528.55008
[49] Varadarajan, K., On a certain problem of realization in homotopy theory, Pacific J. Math., 54, 277-291 (1974) · Zbl 0253.55010
[50] Weibel, Charles, Homotopy ends and Thomason model categories, Selecta Math. (N.S.), 7, 4, 533-564 (2001) · Zbl 0998.18006 · doi:10.1007/s00029-001-8098-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.