×

Sheafifiable homotopy model categories. II. (English) Zbl 1002.18012

[For part I, cf. T. Beke, Math. Proc. Camb. Philos. Soc. 129, No. 3, 447-475 (2000; Zbl 0964.55018)].
Suppose one has a category \({\mathcal C}\) and a functor \(F\) from \({\mathcal C}\) to \({\mathcal S}\)ets. Then there is an induced functor from the category \(s{\mathcal C}\) of simplicial objects in \({\mathcal C}\) to simplicial sets and, in his original book on closed model categories [“Homotopical algebra”, Lect. Notes Math. 43, Springer-Verlag, Berlin (1967; Zbl 0168.20903)], D. G. Quillen wrote down some hypotheses under which \(sC\) has a closed model category with weak equivalences and fibrations created by \(F\). This question can easily be generalized to sheaves: does the induced functor from simplicial sheaves in \(G\) to simplicial sheaves create a model category structure in the same way? The difficulty is that Quillen’s hypotheses will never apply to sheaves in some satisfactory way: Quillen required – among other things – that \({\mathcal C}\) have projective generators in a suitable sense. This, of course, does not apply in a topos setting. The purpose of this paper is to find a substitute for Quillen’s hypotheses that do work well for sheaves. The result is a theorem similar in spirit to Quillen’s result and, more, behaves well with respect to topos morphisms. Also, using the language of definable functors it is possible to generalize the base category away from simplicial sets. Nonetheless, it is worth pointing out that the hard part remains the same: at some point one has to verify that push-outs along acyclic cofibrations remain weak equivalences. This is even difficult for simplicial sets: as the author points out there is no known proof of this fact for simplicial sets which is either internal to simplicial sets – that is, does not use geometric realization – or avoids the axiom of choice.

MSC:

18G55 Nonabelian homotopical algebra (MSC2010)
55U35 Abstract and axiomatic homotopy theory in algebraic topology
18B25 Topoi
Full Text: DOI

References:

[1] Adámek, J.; Rosický, J., Locally Presentable and Accessible Categories, London Mathematical Society Lecture Notes Series, Vol. 189 (1994), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0795.18007
[2] Barr, M.; Wells, C., Toposes, Triples and Theories, Grundlehren der Mathematische Wissenschaften (Fundamental Principles of Mathematical Science), Vol. 278 (1985), Springer: Springer Berlin · Zbl 0567.18001
[3] T. Beke, How (non-)unique is the choice of cofibrations? http://www.math.lsa.umich.edu/ ̃tbeke.; T. Beke, How (non-)unique is the choice of cofibrations? http://www.math.lsa.umich.edu/ ̃tbeke.
[4] T. Beke, Homotopy theory and topoi, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1998.; T. Beke, Homotopy theory and topoi, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1998.
[5] Beke, T., Sheafifiable homotopy model categories, Mathematical Proceedings of the Cambridge Philosophical Society, 129, 3, 447-475 (2000) · Zbl 0964.55018
[6] C. Berger, Double loop spaces, braided monoidal categories and algebraic 3-type of space. in: Higher Homotopy Structures in Topology and Mathematical Physics, Contemporary Mathematics, Vol. 227, American Mathematical Society, Providence, RI, 1999, pp. 49-66.; C. Berger, Double loop spaces, braided monoidal categories and algebraic 3-type of space. in: Higher Homotopy Structures in Topology and Mathematical Physics, Contemporary Mathematics, Vol. 227, American Mathematical Society, Providence, RI, 1999, pp. 49-66. · Zbl 1010.55008
[7] Blanc, D., New model categories from old, Journal of Pure and Applied Algebra, 109, 1, 37-60 (1996) · Zbl 0854.18009
[8] Borceux, F., Handbook of Categorical Algebra, Vol. I-III (1994), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0911.18001
[9] Bousfield, A. K.; Kan, D. M., Homotopy Limits, Completions and Localizations. Homotopy Limits, Completions and Localizations, Lecture Notes in Mathematics, Vol. 304 (1972), Springer: Springer Berlin · Zbl 0259.55004
[10] Cabello, J. G., Simplicial groups as models for \(n\)-types, Cahiers de Topologie et Géométrie Différentielle Catégoriques, 38, 1, 67-92 (1997) · Zbl 0873.18004
[11] Cabello, J. G.; Garzón, A. R., Closed model structures for algebraic models of \(n\)-types, Journal of Pure and Applied Algebra, 103, 3, 287-302 (1995) · Zbl 0837.55014
[12] W. Chachólski, J. Scherer. Homotopy meaningful constructions: Homotopy colimits, Max-Planck-Institut für Mathematik, preprint no. 44, 1998.; W. Chachólski, J. Scherer. Homotopy meaningful constructions: Homotopy colimits, Max-Planck-Institut für Mathematik, preprint no. 44, 1998.
[13] Crans, S. E., Quillen closed model structures for sheaves, Journal of Pure and Applied Algebra, 101, 1, 35-57 (1995) · Zbl 0828.18005
[14] W.G. Dwyer, J. Spaliński, Homotopy theories and model categories, in: Handbook of Algebraic Topology, North-Holland, Amsterdam, 1995, pp. 73-126.; W.G. Dwyer, J. Spaliński, Homotopy theories and model categories, in: Handbook of Algebraic Topology, North-Holland, Amsterdam, 1995, pp. 73-126. · Zbl 0869.55018
[15] W.G. Dwyer, P.S. Hirschhorn, D.M. Kan, Model categories and more general abstract homotopy theory. http://www-math.mit.edu/ ̃psh.; W.G. Dwyer, P.S. Hirschhorn, D.M. Kan, Model categories and more general abstract homotopy theory. http://www-math.mit.edu/ ̃psh.
[16] Dwyer, W. G.; Kan, D. M., Homotopy theory and simplicial groupoids, Indagationes Mathematicae (Nederl. Akad. Wetensch. Proc. Ser. A), 46, 4, 379-385 (1984) · Zbl 0559.55023
[17] Dwyer, W. G.; Kan, D. M., Singular functors and realization functors, Indagationes Mathematicae (Nederl. Akad. Wetensch. Proc. Ser. A), 46, 2, 147-153 (1984) · Zbl 0555.55019
[18] Dwyer, W. G.; Hopkins, M. J.; Kan, D. M., The homotopy theory of cyclic sets, Transactions of the American Mathematical Society, 291, 1, 281-289 (1985) · Zbl 0594.55020
[19] J. Franke, Uniqueness theorems for certain triangulated categories with an Adams spectral sequence. http://www.math.uiuc.edu/K-theory/.; J. Franke, Uniqueness theorems for certain triangulated categories with an Adams spectral sequence. http://www.math.uiuc.edu/K-theory/.
[20] H. Gillet, C. Soulé, Filtrations on higher algebraic \(K\)-theory, in: Algebraic \(K\)-Theory (Seattle, 1997), Proceedings of Symposia in Pure Mathematics, Vol. 67, American Mathematical Society, Providence, RI, 1999, pp. 89-148.; H. Gillet, C. Soulé, Filtrations on higher algebraic \(K\)-theory, in: Algebraic \(K\)-Theory (Seattle, 1997), Proceedings of Symposia in Pure Mathematics, Vol. 67, American Mathematical Society, Providence, RI, 1999, pp. 89-148. · Zbl 0951.19003
[21] Goerss, P.; Jardine, J. F., Localization theories for simplicial presheaves, Canadian Journal of Mathematics, 50, 5, 1048-1089 (1998) · Zbl 0914.55004
[22] Goerss, P. G.; Jardine, J. F., Simplicial Homotopy Theory, Progress in Mathematics, Vol. 174 (1999), Birkhäuser: Birkhäuser Basal · Zbl 0914.55004
[23] Golasiński, M., The category of cubical sets and the category of small categories, Bulletin de l’Acadamie Polonaise des Sciences Serie Sciences Mathematiques, 27, 11, 941-945 (1981) · Zbl 0491.18011
[24] Golasiński, M., On weak homotopy equivalence of simplicial and cubical nerve, Demonstratio Mathematiques, 14, 4, 889-899 (1982) · Zbl 0515.55014
[25] Heller, A., Homotopy Theories, Memoirs of the AMS, Vol. 383 (1988), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0643.55015
[26] V. Hinich, Homological algebra of homotopy algebras. arXiv:q-alg/9702015.; V. Hinich, Homological algebra of homotopy algebras. arXiv:q-alg/9702015. · Zbl 0894.18008
[27] P. Hirschhorn, Localization of model categories. http://www-math.mit.edu/ ̃psh.; P. Hirschhorn, Localization of model categories. http://www-math.mit.edu/ ̃psh.
[28] M. Hovey, Model category structures on chain complexes of sheaves. http://hopf.math.purdue.edu/.; M. Hovey, Model category structures on chain complexes of sheaves. http://hopf.math.purdue.edu/. · Zbl 0969.18010
[29] Hovey, M., Model Categories, Mathematical Surveys and Monographs, Vol. 63 (1999), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0909.55001
[30] Illusie, L., Complexe Cotangent et Déformations, Vol. I-II, Lecture Notes in Mathematics, Vols. 239 and 283 (1971), Springer: Springer Berlin · Zbl 0224.13014
[31] Jardine, J. F., Simplicial presheaves, Journal of Pure and Applied Algebra, 47, 1, 35-87 (1987) · Zbl 0624.18007
[32] A. Joyal, M. Tierney, Strong Stacks and Classifying Spaces, in: Category Theory (Como, 1990), Lecture Notes in Mathematics, Vol. 1488, Springer, Berlin, 1991, pp. 213-236.; A. Joyal, M. Tierney, Strong Stacks and Classifying Spaces, in: Category Theory (Como, 1990), Lecture Notes in Mathematics, Vol. 1488, Springer, Berlin, 1991, pp. 213-236. · Zbl 0748.18009
[33] Joyal, A.; Tierney, M., On the homotopy theory of sheaves of simplicial groupoids, Mathematical Proceedings of the Cambridge Philosophical Society, 120, 2, 263-290 (1996) · Zbl 0866.55023
[34] A. Joyal, G. Wraith, Eilenberg-MacLane toposes and cohomology, in: Mathematical Applications of Category Theory, Contemporary Mathematics, Vol. 30, American Mathematical Society, 1984, Providence, RI, pp. 117-131.; A. Joyal, G. Wraith, Eilenberg-MacLane toposes and cohomology, in: Mathematical Applications of Category Theory, Contemporary Mathematics, Vol. 30, American Mathematical Society, 1984, Providence, RI, pp. 117-131. · Zbl 0538.18003
[35] Makkai, M., Generalized sketches as a framework for completeness theorems, part I-III, Journal of Pure and Applied Algebra, 115, 1,2,3, 49-274 (1997) · Zbl 0871.03045
[36] Makkai, M.; Reyes, G. E., First Order Categorical Logic. Model-Theoretical Methods in the Theory of Topoi and Related Categories, Lecture Notes in Mathematics, Vol. 611 (1977), Springer: Springer Berlin · Zbl 0357.18002
[37] I. Moerdijk, Bisimplicial sets and the group-completion theorem, in: Algebraic \(K\)-theory: Connections with Geometry and Topology, NATO Advanced Sci. Inst. Series, Vol. 279, Kluwer Academic Publishers, Dordrecht, 1989, pp. 225-240.; I. Moerdijk, Bisimplicial sets and the group-completion theorem, in: Algebraic \(K\)-theory: Connections with Geometry and Topology, NATO Advanced Sci. Inst. Series, Vol. 279, Kluwer Academic Publishers, Dordrecht, 1989, pp. 225-240. · Zbl 0708.18008
[38] Moerdijk, I.; Svensson, J. A., Algebraic classification of equivariant homotopy 2-types, part I, Journal of Pure and Applied Algebra, 89, 1, 187-216 (1993) · Zbl 0787.55008
[39] Quillen, D., Homotopical Algebra, Lecture Notes in Mathematics, Vol. 43 (1967), Springer: Springer Berlin · Zbl 0168.20903
[40] C. Rezk, Spaces of algebra structures and cohomology of operads, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1996.; C. Rezk, Spaces of algebra structures and cohomology of operads, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1996.
[41] Spaliński, J., Strong homotopy theory of cyclic sets, Journal of Pure and Applied Algebra, 99, 1, 35-52 (1995) · Zbl 0830.55012
[42] Street, R. H., The algebra of oriented simplexes, Journal of Pure and Applied Algebra, 49, 3, 283-335 (1987) · Zbl 0661.18005
[43] Thomason, R. W., Cat as a closed model category, Cahiers de Topologie et Géométrie Différentielle Catégoriques, 21, 3, 305-324 (1980) · Zbl 0473.18012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.