×

Two-fold homotopy of 2-crossed module maps of commutative algebras. (English) Zbl 1417.55020

Group crossed modules \(\mathcal{G}=(\partial : E\to G,\,\circ)\) are given by a group homomorphism \(\partial : E\to G\) together with an action \(\circ\) of \(G\) on \(E\). The \(2\)-crossed modules of groups are given by a complex \(\mathcal{A}=(L\stackrel{\delta}{\to}E\stackrel{\partial}{\to}G,\,\circ,\,\{,\})\) together with actions \(\circ\) of \(G\) on \(L\) and \(E\), and a map \(\{-,-\} : E\times E\to L\).
Crossed modules and \(2\)-crossed modules of algebras (over a ring) are defined see e.g., [T. Porter, J. Algebra 99, 458–465 (1986; Zbl 0594.13011)] in the same way as in the group case. The authors study the homotopy theory of \(2\)-crossed modules of commutative algebras. In particular, the concept of a two-fold homotopy between a pair of one-fold homotopies connecting \(2\)-crossed module maps \(\mathcal{A}\to\mathcal{B}\) is defined. The main result states: if the domain \(2\)-crossed module \(\mathcal{A}\) is free up to order one (i.e., if the bottom algebra is a polynomial algebra) then we have a \(2\)-groupoid \(\text{HOM}(\mathcal{A},\mathcal{B})_2\) of \(2\)-crossed module maps \(\mathcal{A}\to\mathcal{B}\), homotopies between maps, and two-fold homotopies between homotopies.

MSC:

55U10 Simplicial sets and complexes in algebraic topology
18D05 Double categories, \(2\)-categories, bicategories and generalizations (MSC2010)
18D20 Enriched categories (over closed or monoidal categories)
55Q15 Whitehead products and generalizations

Citations:

Zbl 0594.13011

References:

[1] Akça, İ.; Emir, K.; Martins, J. F., Pointed homotopy of 2-crossed module maps of commutative algebras, Homology Homotopy Appl, 18, 1, 99-128 (2016) · Zbl 1355.18005
[2] André, M., Homologie Des Algèbres Commutatives (1974), New York, NY: Springer, New York, NY · Zbl 0284.18009
[3] Arvasi, Z., Crossed squares and 2-crossed modules of commutative algebras, Theory Appl. Categ, 3, 160-181 (1997) · Zbl 0896.18005
[4] Arvasi, Z.; Porter, T., Simplicial and crossed resolutions of commutative algebras, J. Algebra, 181, 2, 426-448 (1996) · Zbl 0874.18010
[5] Arvasi, Z.; Porter, T., Higher dimensional peiffer elements in simplicial commutative algebras, Theory Appl. Categ, 3, 1-23 (1997) · Zbl 0874.18011
[6] Arvasi, Z.; Porter, T., Freeness conditions for 2-crossed modules of commutative algebras, Appl. Categ. Struct, 6, 4, 455-471 (1998) · Zbl 0923.18003
[7] Baues, H. J., Combinatorial Homotopy and 4-Dimensional Complexes (1991), Berlin: Walter de Gruyter, Berlin · Zbl 0716.55001
[8] Brown, R.; Higgins, P. J.; Sivera, R., Nonabelian Algebraic Topology. Filtered Spaces, Crossed Complexes, Cubical Homotopy Groupoids. With Contributions by Christopher D. Wensley and Sergei V. Soloviev (2011), Zürich: European Mathematical Society (EMS, Zürich · Zbl 1237.55001
[9] Cabello, J. G.; Garzón, A. R., Quillen’s theory for algebraic models of n-types, Extracta Math, 9, 1, 42-47 (1994) · Zbl 1032.55500
[10] Cabello, J. G.; Garzón, A. R., Closed model structures for algebraic models of n-types, J. Pure Appl. Algebra, 103, 3, 287-302 (1995) · Zbl 0837.55014
[11] Conduché, D., Modules croisés généralisés de longueur 2, J. Pure Appl. Algebra, 34, 2-3, 155-178 (1984) · Zbl 0554.20014
[12] Crans, S. E., A tensor product for gray-categories, Theory Appl. Categ, 5, 12-69 (1999) · Zbl 0914.18006
[13] Doncel, J. L.; Grandjeán, A. R.; Vale, M. J., On the homology of commutative algebras, J. Pure Appl. Algebra, 79, 2, 131-157 (1992) · Zbl 0769.13008
[14] Dwyer, W. G.; Kan, D. M., Homotopy theory and simplicial groupoids, Indag. Math, 87, 4, 379-385 (1984) · Zbl 0559.55023
[15] Faria Martins, J., The fundamental 2-crossed complex of a reduced CW-complex, Homology Homotopy Appl, 13, 2, 129-157 (2011) · Zbl 1230.55012
[16] Goerss, P.; Jardine, J. F., Simplicial Homotopy Theory. Progress in Mathematics (Boston, Mass.) Vol. 174 (1999), New York, NY: Springer, New York, NY · Zbl 0949.55001
[17] Goerss, P.; Schemmerhorn, K., Interactions Between Homotopy Theory and Algebra, Vol. 436, Model categories and simplicial methods, 3-49 (2007), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1134.18007
[18] Gohla, B., Mapping spaces of gray-categories, Theory Appl. Categ, 29, 100-187 (2014) · Zbl 1303.18013
[19] Gohla, B.; Faria Martins, J., Pointed homotopy and pointed lax homotopy of 2-crossed module maps, Adv. Math, 248, 986-1049 (2013) · Zbl 1332.18010
[20] Grandjeán, A. R.; Vale, M. J., 2-Módulos Cruzados En La Cohomología De André-Quillen (1986), Madrid: Real Academia de Ciencias Exactas, Físicas y Naturales de Madrid, Madrid · Zbl 0606.13010
[21] Kamps, K. H.; Porter, T., 2-groupoid Enrichments in homotopy theory and algebra, K-Theory, 25, 4, 373-409 (2002) · Zbl 1009.18007
[22] Moerdijk, I.; Toën, B., Simplicial Methods for Operads and Algebraic Geometry, 159-165 (2010), New York, NY: Springer, New York, NY · Zbl 1350.14002
[23] Mutlu, A.; Porter, T., Freeness conditions for 2-crossed modules and complexes, Theory Appl. Categ, 4, 174-194 (1998) · Zbl 0917.18004
[24] Mutlu, A.; Porter, T., Applications of peiffer pairings in the moore complex of a simplicial group, Theory Appl. Categ, 4, 148-173 (1998) · Zbl 0917.18006
[25] Porter, T., Homology of commutative algebras and an invariant of simis and vasconcelos, J. Algebra, 99, 2, 458-465 (1986) · Zbl 0594.13011
[26] Quillen, D. G., Homotopical Algebra. Lecture Notes in Mathematics (1967), New York, NY: Springer, New York, NY · Zbl 0168.20903
[27] Street, R.; Hazewinkel, M., Handbook of Algebra, 1, Categorical structures, 529-577 (1996), North-Holland: Elsevier, North-Holland · Zbl 0854.18001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.