×

Differentiable sphere theorems for submanifolds of positive \(k\)-th Ricci curvature. (English) Zbl 1260.53073

P. Hartman introduced the concept of \(k\)-th Ricci curvature in [J. Differ. Equations 34, 326–338 (1979; Zbl 0443.34029)] for Riemannian manifolds. The authors of this paper are motivated by results on minimal submanifolds of spheres (see [S.-T. Yau, Am. J. Math. 96, 346–366 (1974; Zbl 0304.53041); ibid. 97, 76–100 (1975; Zbl 0304.53042); U. Simon, Arch. Math. 29, 106–112 (1977; Zbl 0389.53028)]) and prove several pinching theorems for compact immersed submanifolds of positive \(k\)-th Ricci curvature.
Reviewer: Udo Simon (Berlin)

MSC:

53C20 Global Riemannian geometry, including pinching
53C40 Global submanifolds
Full Text: DOI

References:

[1] Andrews B.: Positively curved surfaces in the three-sphere. Proc. ICM. II, 221–230 (2002) · Zbl 1050.53055
[2] Berger M.: Les variétés Riemanniennes 1/4-pincées. Ann. Scuola Norm. Sup. Pisa. 14, 161–170 (1960) · Zbl 0096.15502
[3] Böhm C., Wilking B.: Manifolds with positive curvature operator are space forms. Ann. Math. 167, 1079–1097 (2008) · Zbl 1185.53073 · doi:10.4007/annals.2008.167.1079
[4] Brendle S.: A general convergence result for the Ricci flow in higher dimensions. Duke Math. J. 145, 585–601 (2008) · Zbl 1161.53052 · doi:10.1215/00127094-2008-059
[5] Brendle S., Schoen R.: Classification of manifolds with weakly 1/4-pinched curvatures. Acta Math. 200, 1–13 (2008) · Zbl 1157.53020 · doi:10.1007/s11511-008-0022-7
[6] Brendle S., Schoen R.: Manifolds with 1/4-pinched curvature are space forms. J. Amer. Math. Soc. 22, 287–307 (2009) · Zbl 1251.53021 · doi:10.1090/S0894-0347-08-00613-9
[7] Cheeger J., Gromoll D.: On the structure of complete manifolds of nonnegative sectional curvature. Ann. Math. 96, 413–443 (1972) · Zbl 0246.53049 · doi:10.2307/1970819
[8] Elworthy K.D., Rosenberg S.: Homotopy and homology vanishing theorems and the stability of stochastic flows. Geom. Funct. Anal. 6, 51–78 (1996) · Zbl 0858.58053 · doi:10.1007/BF02246767
[9] Freedman M.: The topology of four-dimensional manifolds. J. Diff. Geom. 17, 357–453 (1982) · Zbl 0528.57011
[10] Greenberg M.J.: Lectures on Algebraic Topology. Benjamin, New York (1967) · Zbl 0169.54403
[11] Hartman P.: Oscillation criteria for self-adjoint second-order differential systems and principle sectional curvature. J. Diff. Equ. 34, 326–338 (1979) · Zbl 0443.34029 · doi:10.1016/0022-0396(79)90013-5
[12] Hilton P., Wylie S.: Homology Theory. Cambridge University Press, London (1960) · Zbl 0091.36306
[13] Huisken G.: Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature. Invent. Math. 84, 463–480 (1986) · Zbl 0589.53058 · doi:10.1007/BF01388742
[14] Huisken G.: Deforming hypersurfaces of the sphere by their mean curvature. Math. Z. 195, 205–219 (1987) · Zbl 0626.53039
[15] Klingenberg, W.: Über Riemannsche Mannigfaltigkeiten mit positiver Krümmung. Comm. Math. Helv. 35, 47–54 (1961) · Zbl 0133.15005 · doi:10.1007/BF02567004
[16] Lawson H., Simons J.: On stable currents and their application to global problems in real and complex geometry. Ann. of Math. 98, 427–450 (1973) · Zbl 0283.53049 · doi:10.2307/1970913
[17] Leung P.F.: Minimal submanifolds in a sphere. Math. Z. 183, 75–86 (1983) · doi:10.1007/BF01187216
[18] Leung P.F.: On the topology of a compact submanifold of a sphere with bounded second fundamental form. Manuscripta Math. 79, 183–185 (1993) · Zbl 0788.53050 · doi:10.1007/BF02568337
[19] Rauch H.E.: A contribution to differential geometry in the large. Ann. of Math. 54, 38–55 (1951) · Zbl 0043.37202 · doi:10.2307/1969309
[20] Shen Z.M.: On complete manifolds of nonnegative k-th Ricci curvature. Trans. Amer. Math. Soc. 338, 289–310 (1993) · Zbl 0783.53026
[21] Shiohama, K.: Sphere theorems. In: Dillen and L.C.A. Verstraelen (eds.) Handbook of differential geometry, vol. 1, F.J.E. , Elsevier, Amsterdam (2000) · Zbl 0968.53003
[22] Shiohama K., Xu H.W.: The topological sphere theorem for complete submanifolds. Compositio Math. 107, 221–232 (1997) · Zbl 0905.53038 · doi:10.1023/A:1000189116072
[23] Simon U.: Submanifolds with parallel mean curvature vector and the curvature of minimal submanifolds of spheres. Arch. Math. (Basel) 29, 106–112 (1977) · Zbl 0389.53028 · doi:10.1007/BF01220381
[24] Sjerve D.: Homology spheres which are covered by spheres. J Lond. Math. Soc. 6, 333–336 (1973) · Zbl 0252.57003 · doi:10.1112/jlms/s2-6.2.333
[25] Smale S.: Generalized poincaré’s conjecture in dimensions greater than four. Ann. Math. 74, 391–406 (1961) · Zbl 0099.39202 · doi:10.2307/1970239
[26] Vlachos Th.: A sphere theorem for odd-dimensional submanifolds of spheres. Proc. Amer. Math. Soc. 130, 167–173 (2002) · Zbl 0997.53041 · doi:10.1090/S0002-9939-01-06096-8
[27] Vlachos Th.: Homology vanishing theorems for submanifolds. Proc. Amer. Math. Soc. 135, 2607–2617 (2007) · Zbl 1173.53322 · doi:10.1090/S0002-9939-07-08901-0
[28] Wang P.H., Shen C.L.: A sphere theorem with positive ricci curvature and reverse volume Pinching. Acta Math. Sinica (Chin. Ser.) 50, 1135–1140 (2007) · Zbl 1141.53031
[29] Wu H.: Manifolds of partially positive curvature. Indiana Univ. Math. J. 36, 525–548 (1987) · Zbl 0639.53050 · doi:10.1512/iumj.1987.36.36029
[30] Xin Y.L.: Application of integral currents to vanishing theorems. Sci. Sinica(A) 27, 233–241 (1984) · Zbl 0554.49021
[31] Xu H.W., Gu J.R.: An optimal differentiable sphere theorem for complete manifolds. Math. Res. Lett. 17, 1111–1124 (2010) · Zbl 1221.53068 · doi:10.4310/MRL.2010.v17.n6.a10
[32] Xu, H.W., Huang, F., Zhao, E.T.: Differentiable pinching theorems for submanifolds via Ricci flow (preprint) · Zbl 1334.53025
[33] Xu, H.W., Yang, G.X.: Topological sphere theorems for certain compact Riemannian submanifolds (preprint)
[34] Xu H.W., Zhao E.T.: Topological and differentiable sphere theorems for complete submanifolds. Comm. Anal. Geom. 17, 565–585 (2009) · Zbl 1185.53033 · doi:10.4310/CAG.2009.v17.n3.a6
[35] Yau, S.T.: Submanifolds with constant mean curvature I, II. Am. J. Math. 96, 346–366 (1974); 97, 76–100 (1975) · Zbl 0304.53041
[36] Yau, S.T., Schoen, R.: Lectures on differential geometry. Higher Education Press, Beijing (2004) (in Chinese) · Zbl 0830.53001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.