×

Two-compartment stochastic model of a neuron. (English) Zbl 0940.92003

Summary: A two-compartment neuronal model is investigated. The model neuron is composed of two interconnected parts – a dendrite and a trigger zone, with a white noise input in the dendritic compartment. The first and the second moments of the stochastic processes describing the membrane depolarization in both compartments are derived and investigated. When a firing threshold is not imposed, the level of neuronal activity is deduced from a generally accepted relationship between the membrane potential and the firing frequency. When a firing threshold is imposed, some approximations and simulations are used to characterize the spiking activity of the model.
It is shown that the activity of the two-compartment model is less sensitive to abrupt changes in stimulation than the activity of the single-compartment model. The delayed response of the complex model is a natural consequence of the fact that the input takes place in the compartment different from that at which the output is generated. Further, the model predicts serial correlation of interspike intervals, which is a phenomenon often observed in experimental data but not reproducible in the single-compartment models under steady-state stimulation. Finally, the investigated model neuron shows lower sensitivity to the input intensity and larger coding range than the single-compartment model.

MSC:

92C20 Neural biology
60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.)
Full Text: DOI

References:

[1] L.F. Abbott, T.B. Kepler, Model neurons: from Hodgkin-Huxley to Hopfield, in: L. Garrido (Ed.), Statistical Mechanics of Neural Networks, Springer, Berlin, 1990.; L.F. Abbott, T.B. Kepler, Model neurons: from Hodgkin-Huxley to Hopfield, in: L. Garrido (Ed.), Statistical Mechanics of Neural Networks, Springer, Berlin, 1990.
[2] Kistler, W. M.; Gerstner, W.; van Hemmen, J. L., Reduction of the Hodgkin-Huxley equations to a single-variable threshold model, Neural Comput., 9, 1015-1045 (1997)
[3] Segev, I., Single neuron models: oversimple, complex and reduced, Trends in Neurosciences, 15, 414-421 (1992)
[4] I. Segev, J.W. Fleshman, R.E. Burke, Compartmental models of complex neurons, in: C. Koch, I. Segev (Eds.), Methods in Neuronal Modeling, MIT Press, Cambridge, 1989.; I. Segev, J.W. Fleshman, R.E. Burke, Compartmental models of complex neurons, in: C. Koch, I. Segev (Eds.), Methods in Neuronal Modeling, MIT Press, Cambridge, 1989.
[5] W. Rall, Cable theory of dendritic neurons, in: C. Koch, I. Segev (Eds.), Methods in Neuronal Modeling, MIT Press, Cambridge, 1989.; W. Rall, Cable theory of dendritic neurons, in: C. Koch, I. Segev (Eds.), Methods in Neuronal Modeling, MIT Press, Cambridge, 1989.
[6] Tuckwell, H. C.; Walsh, J. B., Random currents through nerve membranes I. Uniform Poisson or white noise current in one-dimensional cables, Biol. Cybern., 49, 99-110 (1983) · Zbl 0536.92019
[7] Tuckwell, H. C.; Wan, F. Y.M.; Wong, Y. S., The interspike intervals of a cable model neuron with white noise input, Biol. Cybern., 49, 155-167 (1984) · Zbl 0553.92010
[8] J. Segundo, J.-F. Vibert, K. Pakdaman, M. Stiber, O. Diez Martinez, Noise and the neuroscience: a long history, a recent revival and some theory, in: K.H. Pribram (Ed.), Origins: Brain & Self Organization, Lawrance Erlbaum, Hillsdale, 1994.; J. Segundo, J.-F. Vibert, K. Pakdaman, M. Stiber, O. Diez Martinez, Noise and the neuroscience: a long history, a recent revival and some theory, in: K.H. Pribram (Ed.), Origins: Brain & Self Organization, Lawrance Erlbaum, Hillsdale, 1994.
[9] H.C. Tuckwell, Introduction to Theoretical Neurobiology. Cambridge Univ Press, Cambridge, 1988.; H.C. Tuckwell, Introduction to Theoretical Neurobiology. Cambridge Univ Press, Cambridge, 1988. · Zbl 0647.92009
[10] Kohn, A. F., Dendritic transformations on random synaptic inputs as measured from a neuron’s spike train – modeling and simulation, IEEE Trans. Biomed. Eng., 36, 44-54 (1989)
[11] Lánský, P.; Rospars, J.-P., Ornstein-Uhlenbeck model neuron revisited, Biol. Cybern., 72, 397-406 (1995) · Zbl 0819.92005
[12] Rospars, J.-P.; Lánský, P., Stochastic model neuron without resetting of dendritic potential. Application to the olfactory system, Biol. Cybern., 69, 283-294 (1993) · Zbl 0783.92008
[13] Bressloff, P. C., Dynamics of compartmental model integrate-and-fire neuron with somatic potential reset, Physica D, 80, 399-412 (1995) · Zbl 0885.65155
[14] Lánský, P.; Sato, S., The stochastic diffusion models of nerve membrane depolarization and interspike interval generation, J. Peripheral Nervous System, 4, 27-42 (1999)
[15] Stein, R. B., A theoretical analysis of neuronal variability, Biophys. J., 5, 173-195 (1965)
[16] Lánský, P., On approximations of Stein’s neuronal model, J. Theor. Biol., 107, 631-647 (1984)
[17] Ricciardi, L. M.; Sacerdote, L., The Ornstein-Uhlenbeck process as a model of neuronal activity, Biol. Cybern., 35, 1-9 (1979) · Zbl 0414.92010
[18] Lánský, P.; Smith, C. E., The effect of random initial value in neuronal first-passage-time models, Math. Biosci., 93, 191-215 (1989) · Zbl 0661.92008
[19] Bugmann, G.; Christodulou, C.; Taylor, J. G., Role of temporal integration and fluctuation detection in the highly irregular firing of a leaky integrator neuron model with partial reset, Neural Comput., 9, 985-1000 (1997)
[20] Lánský, P., Sources of periodical force in noisy integrate-and-fire models of neuronal dynamics, Phys. Rev. E, 55, 2040-2043 (1997)
[21] Bulsara, A. R.; Elston, T. C.; Doering, C. R.; Lowen, S. B.; Lindberg, K., Cooperative behavior in periodically driven noisy integrate-and-fire models of neuronal dynamics, Phys. Rev. E, 53, 3958-3969 (1996)
[22] Plesser, H. E.; Tanaka, S., Stochastic resonance in a model neuron with reset, Phys. Lett. A, 225, 228-234 (1997)
[23] Bulsara, A. R.; Lowen, S. B.; Rees, C. D., Cooperative behavior in the periodically modulated Wiener process: Noise-induced complexity in a model neuron, Phys. Rev. E, 49, 4989-4999 (1994)
[24] Longtin, A.; Bulsara, A.; Pierson, D.; Moss, F., Bistability and the dynamics of periodically forced sensory neurons, Biol. Cybern., 70, 569-578 (1994) · Zbl 0800.92073
[25] F. Moss, A. Bulsara, M.F. Shlesinger (Eds.), Proceedings of the NATO ARW on Stochastic Resonance in Physics and Biology, J. Stat. Phys. 70 (1993).; F. Moss, A. Bulsara, M.F. Shlesinger (Eds.), Proceedings of the NATO ARW on Stochastic Resonance in Physics and Biology, J. Stat. Phys. 70 (1993).
[26] Musila, M.; Šuta, D.; Lánský, P., Computation of first passage time moments for stochastic diffusion processes modeling the nerve membrane depolarization, Comp. Meth. Prog. Biomed., 49, 19-27 (1996)
[27] L.M. Ricciardi, S. Sato, Diffusion processes and first-passage-time problems, in: L.M. Ricciardi (Ed.), Lectures in Applied Mathematics and Informatics, Manchester University Press, Manchester, 1990.; L.M. Ricciardi, S. Sato, Diffusion processes and first-passage-time problems, in: L.M. Ricciardi (Ed.), Lectures in Applied Mathematics and Informatics, Manchester University Press, Manchester, 1990. · Zbl 0736.60073
[28] Lánský, P.; Lánská, V., First-passage-time problem for simulated stochastic diffusion processes, Comp. Biol. Med., 24, 91-101 (1994)
[29] Cerbone, G.; Ricciardi, L. M.; Sacerdote, L., Mean, variance and skewness of the first passage time for the Ornstein-Uhlenbeck process, Cybern. Syst., 12, 395-429 (1981) · Zbl 0513.60078
[30] Rospars, J.-P.; Lánský, P.; Vermeulen, A.; Tuckwell, H. C., Coding of odor intensity in a steady-state deterministic model of the olfactory receptor neuron, J. Comput. Neurosc., 3, 51-72 (1996) · Zbl 0852.92003
[31] Buhmann, J.; Shulten, K., Influence of noise on the function of a “physiological” neural network, Biol. Cybern., 56, 313-327 (1987) · Zbl 0616.92004
[32] Yu, X.; Lewis, E. R., Studies with spike initiators: linearization by noise allows continuous signal modulation in neural networks, IEEE Trans. Biomed. Eng., 36, 36-43 (1989)
[33] Gerstner, W.; van Hemmen, J. L., Universality in neural networks: the importance of the mean firing rate, Biol. Cybern., 67, 195-205 (1992) · Zbl 0746.92002
[34] Wan, F. Y.M.; Tuckwell, H. C., Neuronal firing and input variability, J. Theor. Neurobiol., 1, 197-218 (1982)
[35] L. Arnold, Stochastic Differential Equations: Theory and Applications, Wiley, New York, 1974.; L. Arnold, Stochastic Differential Equations: Theory and Applications, Wiley, New York, 1974. · Zbl 0278.60039
[36] Nobile, A. G.; Ricciardi, L. M.; Sacerdote, L., Exponential trends of Ornstein-Uhlenbeck first-passage-time densities, J. Appl. Prob., 22, 360-369 (1985) · Zbl 0564.60076
[37] Tuckwell, H. C.; Richter, W., Neuronal interspike time distribution and the estimation of neurophysiological and neuroanatomical parameters, J. Theor. Biol., 71, 167-183 (1978)
[38] Amit, D. J.; Brunel, N., Global spontaneous activity and local structured (learned) delay activity in cortex, Cerebral Cortex, 7, 237-252 (1997)
[39] Amit, J.; Tsodyks, M. V., Effective neurons and attractor neural networks in cortical environment, Network, 3, 121-131 (1992) · Zbl 0762.92006
[40] Inoue, J.; Sato, S.; Ricciardi, L. M., On the parameter estimation for diffusion models of single neurons’ activities, Biol Cybern., 73, 209-221 (1995) · Zbl 0827.92009
[41] Cocatre-Zilgien, J. H.; Delcomyn, F., Identification of bursts in spike trains, J. Neurosci. Meth., 41, 19-30 (1992)
[42] de la Prida, L. M.; Stollenwerk, N.; Sanchez-Andres, J. V., Bursting as a source for predictability in biological neural network activity, Physica D, 110, 323-331 (1997) · Zbl 0925.92008
[43] Rospars, J.-P.; Lánský, P.; Vaillant, J.; Duchamp-Viret, P.; Duchamp, A., Spontaneous activity of first-and second-order neurons in the olfactory system, Brain Res., 662, 31-44 (1994)
[44] M. Migliore, P. Lánský, How stochastic conditioning stimuli alter the induction of long-term depression and long-term potentiation in a model synapse, Biol. Cybern., in press; M. Migliore, P. Lánský, How stochastic conditioning stimuli alter the induction of long-term depression and long-term potentiation in a model synapse, Biol. Cybern., in press
[45] Vermeulen, A.; Rospars, J.-P.; Lánský, P.; Tuckwell, H. C., Coding of stimulus intensity in an olfactory receptor neuron: role of neuron spatial extent and passive dendritic backpropagation of action potential, Bull. Math. Biol., 58, 493-512 (1996) · Zbl 0852.92003
[46] Deco, G.; Schürmann, B., Stochastic resonance in the mutual information between input and output spike trains of noisy central neurons, Physica D, 117, 276-282 (1998) · Zbl 0937.92004
[47] Musila, M.; Lánský, P., Generalized Stein’s model for anatomically complex neurons, BioSystems, 25, 179-191 (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.