×

Extension of the \(\mathfrak{osp}(m|n)\sim \mathfrak{so}(m-n)\) correspondence to the infinite-dimensional chiral spinors and self dual tensors. (English) Zbl 1364.81278

Summary: The spinor representations of the orthosymplectic Lie superalgebras \(\mathfrak{osp}(m|n)\) are considered and constructed. These are infinite-dimensional irreducible representations, of which the superdimension coincides with the dimension of the spinor representation of \(\mathfrak{so}(m-n)\). Next, we consider the self dual tensor representations of \(\mathfrak{osp}(m|n)\) and their generalizations: these are also infinite-dimensional and correspond to the highest irreducible component of the \(p\)th power of the spinor representation. We determine the character of these representations, and deduce a superdimension formula. From this, it follows that also for these representations the \(\mathfrak{osp}(m|n)\sim \mathfrak{so}(m-n)\) correspondence holds.

MSC:

81V80 Quantum optics
81T10 Model quantum field theories
83E15 Kaluza-Klein and other higher-dimensional theories
17B81 Applications of Lie (super)algebras to physics, etc.
81Q70 Differential geometric methods, including holonomy, Berry and Hannay phases, Aharonov-Bohm effect, etc. in quantum theory
17A70 Superalgebras

References:

[1] Balantekin A B and Bars I 1981 Representations of supergroups J. Math. Phys.22 1810-8 · Zbl 0547.22014 · doi:10.1063/1.525127
[2] Becchi C, Rouet A and Stora R 1975 Renormalization of the abelian Higgs-Kibble model Commun. Math. Phys.42 127-62 · doi:10.1007/BF01614158
[3] Becchi C, Rouet A and Stora R 1976 Renormalization of gauge theories Ann. Phys.98 287-321 · doi:10.1016/0003-4916(76)90156-1
[4] Tyutin I V 1975 Lebedev Institute Preprint: FIAN-39 (unpublished)
[5] Berele A and Regev A 1987 Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras Adv. Math.64 118-75 · Zbl 0617.17002 · doi:10.1016/0001-8708(87)90007-7
[6] Baulieu L and Thierry-Mieg J 1983 Covariant quantization of non-abelian antisymmetric tensor gauge theories Nucl. Phys. B 228 259-84 · doi:10.1016/0550-3213(83)90324-3
[7] Bonora L 2016 BRST and supermanifolds Nucl. Phys. B 912 103-18 · Zbl 1349.81171 · doi:10.1016/j.nuclphysb.2016.03.001
[8] Bonora L and Tonin M 1981 Superfield formulation of extended BRS symmetry Phys. Lett. B 98 48-50 · doi:10.1016/0370-2693(81)90365-8
[9] Bracken A J and Green H S 1972 Algebraic identities for parafermi statistics of given order Nuovo Cimento9 349-65 · doi:10.1007/BF02789725
[10] Cartan É 1938 (Leçons sur la Théorie des Spineurs vol I, II) (Paris: Hermann) · Zbl 0022.17101
[11] Cartan É 1966 The Theory of Spinors (Paris: Hermann) (Engl. transl.) · Zbl 0147.40101
[12] Cremmer E, Julia B and Scherk J 1978 Supergravity theory in eleven-dimensions Phys. Lett.76B 409-12 · Zbl 1156.83327 · doi:10.1016/0370-2693(78)90894-8
[13] Cummins C 1986 Application of S-function techniques to representations of Lie superalgebras and symmetry breaking PhD Thesis University of Southampton
[14] Cummins C J and King R C 1987 Some noteworthy S-function identities Preprint Centre des Recherche Mathematiques Université de Montréal, Canada
[15] De Witt B S 1965 Dynamical Theory of Groups and Fields (New York: Gordon and Breach) · Zbl 0169.57101
[16] Delbourgo R and Jarvis P D 1982 Extended BRS invariance and OSp(4/2) supersymmetry J. Phys. A: Math. Gen.15 611-25 · doi:10.1088/0305-4470/15/2/028
[17] Delbourgo R, Jarvis P D and Thompson G 1982 Extended Becchi-Rouet-Stora invarience for gravity via local Osp(4/2) supersymmetry Phys. Rev. D 26 775-86 · doi:10.1103/PhysRevD.26.775
[18] Faddeev L D and Popov V N 1967 Feynman diagrams for the Yang-Mills field Phys. Lett. B 25 29-30 · doi:10.1016/0370-2693(67)90067-6
[19] Feynman R P 1963 Quantum theory of gravitation Acta Phys. Pol.24 697-722
[20] Frappat L, Sciarrino A and Sorba P 2000 Dictionary on Lie Algebras and Superalgebras (London: Academic Press) · Zbl 0965.17001
[21] Gould M D and Isaac P S 2015 Reduced matrix elements of the orthosymplectic Lie superalgebra J. Phys. A: Math. Theor.48 025201 · Zbl 1318.17004 · doi:10.1088/1751-8113/48/2/025201
[22] Green H S and Jarvis P D 1983 Casimir invariants, characteristic identities, and Young diagrams for color algebras and superalgebras J. Math. Phys.24 1681-7 · Zbl 0517.17002 · doi:10.1063/1.525911
[23] Green M B and Schwarz J H 1983 Extended supergravity in 10 dimensions Phys. Lett. B 122 143-7 · doi:10.1016/0370-2693(83)90781-5
[24] Kac V G 1977 Lie superalgebras Adv. Math.26 8-96 · Zbl 0366.17012 · doi:10.1016/0001-8708(77)90017-2
[25] Kac V G 1978 Representations of classical Lie superalgebras Lect. Notes Math.626 597-626 · Zbl 0388.17002 · doi:10.1007/BFb0063691
[26] Kac V G and Wakimoto M 1994 Integrable highest weight modules over affine superalgebras and number theory Prog. Math.123 415-56 · Zbl 0854.17028
[27] Kac V G and Wakimoto M 2016 Representations of affine superalgebras and mock theta functions. III Izv. Math.80 693-750 · Zbl 1373.17027 · doi:10.1070/IM8408
[28] King R C 1983 Supersymmetric functions and the Lie supergroup U(m/n) Ars. Comb.16A 269-87 · Zbl 0547.22016
[29] King R C 1983 Generalised Young tableaux for Lie algebras and superalgebras Lect. Notes Phys.180 41-7 · Zbl 0529.17005 · doi:10.1007/3-540-12291-5_6
[30] King R C 1990 S-functions and characters of Lie algebras and superalgebras IMA Vol. Math. Appl.19 226-61 · Zbl 0713.17006
[31] King R C and Wybourne B G 2000 Analogies between finite-dimensional irreducible representations of SO(2n) and infinite-dimensional irreducible representations of Sp(2n,R) J. Math. Phys.41 5002-19 · Zbl 0976.22016 · doi:10.1063/1.533389
[32] King R C 2013 From Palev’s study of Wigner quantum systems to new results on sums of Schur functions Proc. in Mathematics & Statistics vol 36 (Berlin: Springer) pp 61-75 · Zbl 1269.81226
[33] Lievens S, Stoilova N I and Van der Jeugt J 2008 The paraboson Fock space and unitary irreducible representations of the Lie superalgebra osp(1|2n) Commun. Math. Phys.281 805-26 · Zbl 1184.17004 · doi:10.1007/s00220-008-0503-8
[34] Macdonald I G 1995 Symmetric Functions and Hall Polynomials 2nd edn (Oxford: Oxford University Press) · Zbl 0824.05059
[35] Moens E M and Van der Jeugt J 2004 On dimension formulas for gl(m|n) representations J. Lie Theory14 523-35 · Zbl 1085.17007
[36] Ne’eman Y 1978 Spinor type fields with linear, affine and general coordinate transformations Ann. Inst. Henri Poincare A 28 369-78 · Zbl 0388.22010
[37] Serre J 1987 Complex Semisimple Lie Algebras (New York: Springer) pp 48-9 and 52-5 · Zbl 0628.17003 · doi:10.1007/978-1-4757-3910-7
[38] Stoilova N I and Van der Jeugt J 2008 The parafermion Fock space and explicit so(2n+1) representations J. Phys. A: Math. Theor.41 075202 · Zbl 1138.81023 · doi:10.1088/1751-8113/41/7/075202
[39] Stoilova N I and Van der Jeugt J 2015 A class of infinite-dimensional representations of the Lie superalgebra osp(2m+1|2n) and the parastatistics Fock space J. Phys. A: Math. Theor.48 155202 · Zbl 1328.17009 · doi:10.1088/1751-8113/48/15/155202
[40] Thierry-Mieg J 1984 Superspin et dimension négative C. R. Acad. Sci. Paris Sér. II 299 1309-12 · Zbl 0572.17004
[41] Van der Jeugt J 1985 Irreducible representations of the exceptional Lie superalgebras D(2,1;α) J. Math. Phys.26 913-24 · Zbl 0604.17001 · doi:10.1063/1.526547
[42] Van der Jeugt J 1991 Character formulae for the Lie superalgebra C(n) Commun. Algebra19 199-222 · Zbl 0721.17004 · doi:10.1080/00927879108824137
[43] Yamane H 2014 Exposition on classification of finite dimensional irreducible representations of the Lie superalgebra B(m,n) J. Phys.: Conf. Ser.563 012035 · doi:10.1088/1742-6596/563/1/012035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.